Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Am J Physiol Regul Integr Comp Physiol ; 324(1): R90-R101, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36440901

RESUMO

Widespread consumption of diets high in fat and fructose (Western diet, WD) has led to increased prevalence of obesity and diastolic dysfunction (DD). DD is a prominent feature of heart failure with preserved ejection fraction (HFpEF). However, the underlying mechanisms of DD are poorly understood, and treatment options are still limited. We have previously shown that deletion of the cell-specific mineralocorticoid receptor in endothelial cells (ECMR) abrogates DD induced by WD feeding in female mice. However, the specific role of ECMR activation in the pathogenesis of DD in male mice has not been clarified. Therefore, we fed 4-wk-old ECMR knockout (ECMRKO) male mice and littermates (LM) with either a WD or chow diet (CD) for 16 wk. WD feeding resulted in DD characterized by increased left ventricle (LV) filling pressure (E/e') and diastolic stiffness [E/e'/LV inner diameter at end diastole (LVIDd)]. Compared with CD, WD in LM resulted in increased myocardial macrophage infiltration, oxidative stress, and increased myocardial phosphorylation of Akt, in concert with decreased phospholamban phosphorylation. WD also resulted in focal cardiomyocyte remodeling, characterized by areas of sarcomeric disorganization, loss of mitochondrial electron density, and mitochondrial fragmentation. Conversely, WD-induced DD and associated biochemical and structural abnormalities were prevented by ECMR deletion. In contrast with our previously reported observations in females, WD-fed male mice exhibited enhanced Akt signaling and a lower magnitude of cardiac injury. Collectively, our data support a critical role for ECMR in obesity-induced DD and suggest critical mechanistic differences in the genesis of DD between males and females.


Assuntos
Cardiomiopatias , Insuficiência Cardíaca , Feminino , Masculino , Animais , Camundongos , Células Endoteliais/patologia , Insuficiência Cardíaca/complicações , Receptores de Mineralocorticoides/genética , Camundongos Obesos , Proteínas Proto-Oncogênicas c-akt , Volume Sistólico , Cardiomiopatias/etiologia , Cardiomiopatias/prevenção & controle , Dieta Ocidental , Obesidade/etiologia
2.
Endocr Rev ; 42(6): 839-871, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-33693711

RESUMO

The endoplasmic reticulum (ER) hosts linear polypeptides and fosters natural folding of proteins through ER-residing chaperones and enzymes. Failure of the ER to align and compose proper protein architecture leads to accumulation of misfolded/unfolded proteins in the ER lumen, which disturbs ER homeostasis to provoke ER stress. Presence of ER stress initiates the cytoprotective unfolded protein response (UPR) to restore ER homeostasis or instigates a rather maladaptive UPR to promote cell death. Although a wide array of cellular processes such as persistent autophagy, dysregulated mitophagy, and secretion of proinflammatory cytokines may contribute to the onset and progression of cardiometabolic diseases, it is well perceived that ER stress also evokes the onset and development of cardiometabolic diseases, particularly cardiovascular diseases (CVDs), diabetes mellitus, obesity, and chronic kidney disease (CKD). Meanwhile, these pathological conditions further aggravate ER stress, creating a rather vicious cycle. Here in this review, we aimed at summarizing and updating the available information on ER stress in CVDs, diabetes mellitus, obesity, and CKD, hoping to offer novel insights for the management of these cardiometabolic comorbidities through regulation of ER stress.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus , Insuficiência Renal Crônica , Estresse do Retículo Endoplasmático/fisiologia , Feminino , Humanos , Masculino , Obesidade , Insuficiência Renal Crônica/terapia
3.
Am J Physiol Renal Physiol ; 320(3): F505-F517, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33522410

RESUMO

Recent evidence suggests that dipeptidyl peptidase-4 (DPP4) inhibition with saxagliptin (Saxa) is renoprotective under comorbid conditions associated with activation of the renin-angiotensin-aldosterone system (RAAS), such as diabetes, obesity, and hypertension, which confer a high cardiovascular risk. Immune system activation is now recognized as a contributor to RAAS-mediated tissue injury, and, importantly, immunomodulatory effects of DPP4 have been reported. Accordingly, we examined the hypothesis that DPP4 inhibition with Saxa attenuates angiotensin II (ANG II)-induced kidney injury and albuminuria via attenuation of immune activation in the kidney. To this end, male mice were infused with either vehicle or ANG II (1,000 ng/kg/min, s.c.) for 3 wk and received either placebo or Saxa (10 mg/kg/day, p.o.) during the final 2 wk. ANG II infusion increased kidney, but not plasma, DPP4 activity in vivo as well as DPP4 activity in cultured proximal tubule cells. The latter was prevented by angiotensin receptor blockade with olmesartan. Further, ANG II induced hypertension and kidney injury characterized by mesangial expansion, mitochondrial damage, reduced brush border megalin expression, and albuminuria. Saxa inhibited DPP4 activity ∼50% in vivo and attenuated ANG II-mediated kidney injury, independent of blood pressure. Further mechanistic experiments revealed mitigation by Saxa of proinflammatory and profibrotic mediators activated by ANG II in the kidney, including CD8+ T cells, resident macrophages (CD11bhiF4/80loLy6C-), and neutrophils. In addition, Saxa improved ANG II suppressed anti-inflammatory regulatory T cell and T helper 2 lymphocyte activity. Taken together, these results demonstrate, for the first time, blood pressure-independent involvement of renal DPP4 activation contributing to RAAS-dependent kidney injury and immune activation.NEW & NOTEWORTHY This work highlights the role of dipeptidyl peptidase-4 (DPP4) in promoting ANG II-mediated kidney inflammation and injury. Specifically, ANG II infusion in mice led to increases in blood pressure and kidney DPP4 activity, which then led to activation of CD8+ T cells, Ly6C- macrophages, and neutrophils and suppression of anti-inflammatory T helper 2 lymphocytes and regulatory T cells. Collectively, this led to kidney injury, characterized by mesangial expansion, mitochondrial damage, and albuminuria, which were mitigated by DPP4 inhibition independent of blood pressure reduction.


Assuntos
Dipeptidil Peptidase 4/metabolismo , Hipoglicemiantes/farmacologia , Macrófagos/metabolismo , Angiotensina II/farmacologia , Animais , Inibidores da Dipeptidil Peptidase IV/farmacologia , Hipertensão/tratamento farmacológico , Hipertensão/fisiopatologia , Rim/efeitos dos fármacos , Rim/metabolismo , Túbulos Renais Proximais/efeitos dos fármacos , Túbulos Renais Proximais/metabolismo , Macrófagos/efeitos dos fármacos , Masculino , Camundongos
4.
Nat Rev Endocrinol ; 14(6): 356-376, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29686432

RESUMO

Obesity poses a severe threat to human health, including the increased prevalence of hypertension, insulin resistance, diabetes mellitus, cancer, inflammation, sleep apnoea and other chronic diseases. Current therapies focus mainly on suppressing caloric intake, but the efficacy of this approach remains poor. A better understanding of the pathophysiology of obesity will be essential for the management of obesity and its complications. Knowledge gained over the past three decades regarding the aetiological mechanisms underpinning obesity has provided a framework that emphasizes energy imbalance and neurohormonal dysregulation, which are tightly regulated by autophagy. Accordingly, there is an emerging interest in the role of autophagy, a conserved homeostatic process for cellular quality control through the disposal and recycling of cellular components, in the maintenance of cellular homeostasis and organ function by selectively ridding cells of potentially toxic proteins, lipids and organelles. Indeed, defects in autophagy homeostasis are implicated in metabolic disorders, including obesity, insulin resistance, diabetes mellitus and atherosclerosis. In this Review, the alterations in autophagy that occur in response to nutrient stress, and how these changes alter the course of obesogenesis and obesity-related complications, are discussed. The potential of pharmacological modulation of autophagy for the management of obesity is also addressed.


Assuntos
Autofagia/efeitos dos fármacos , Índice de Massa Corporal , Dieta Redutora/métodos , Obesidade/fisiopatologia , Obesidade/terapia , Animais , Terapia Combinada , Estilo de Vida Saudável , Humanos , Camundongos , Camundongos Knockout , Terapia de Alvo Molecular/métodos , Obesidade/genética , Prognóstico , Medição de Risco , Papel (figurativo) , Resultado do Tratamento
5.
Endocrinology ; 158(10): 3592-3604, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28977602

RESUMO

Activation of the renin-angiotensin-aldosterone system is common in hypertension and obesity and contributes to cardiac diastolic dysfunction, a condition for which no treatment currently exists. In light of recent reports that antihyperglycemia incretin enhancing dipeptidyl peptidase (DPP)-4 inhibitors exert cardioprotective effects, we examined the hypothesis that DPP-4 inhibition with saxagliptin (Saxa) attenuates angiotensin II (Ang II)-induced cardiac diastolic dysfunction. Male C57BL/6J mice were infused with either Ang II (500 ng/kg/min) or vehicle for 3 weeks receiving either Saxa (10 mg/kg/d) or placebo during the final 2 weeks. Echocardiography revealed Ang II-induced diastolic dysfunction, evidenced by impaired septal wall motion and prolonged isovolumic relaxation, coincident with aortic stiffening. Ang II induced cardiac hypertrophy, coronary periarterial fibrosis, TRAF3-interacting protein 2 (TRAF3IP2)-dependent proinflammatory signaling [p-p65, p-c-Jun, interleukin (IL)-17, IL-18] associated with increased cardiac macrophage, but not T cell, gene expression. Flow cytometry revealed Ang II-induced increases of cardiac CD45+F4/80+CD11b+ and CD45+F4/80+CD11c+ macrophages and CD45+CD4+ lymphocytes. Treatment with Saxa reduced plasma DPP-4 activity and abrogated Ang II-induced cardiac diastolic dysfunction independent of aortic stiffening or blood pressure. Furthermore, Saxa attenuated Ang II-induced periarterial fibrosis and cardiac inflammation, but not hypertrophy or cardiac macrophage infiltration. Analysis of Saxa-induced changes in cardiac leukocytes revealed Saxa-dependent reduction of the Ang II-mediated increase of cardiac CD11c messenger RNA and increased cardiac CD8 gene expression and memory CD45+CD8+CD44+ lymphocytes. In summary, these results demonstrate that DPP-4 inhibition with Saxa prevents Ang II-induced cardiac diastolic dysfunction, fibrosis, and inflammation associated with unique shifts in CD11c-expressing leukocytes and CD8+ lymphocytes.


Assuntos
Adamantano/análogos & derivados , Aorta/efeitos dos fármacos , Diástole/efeitos dos fármacos , Dipeptídeos/farmacologia , Inibidores da Dipeptidil Peptidase IV/farmacologia , Coração/efeitos dos fármacos , Rigidez Vascular/efeitos dos fármacos , Adamantano/farmacologia , Proteínas Adaptadoras de Transdução de Sinal/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Angiotensina II/toxicidade , Animais , Pressão Sanguínea/efeitos dos fármacos , Linfócitos T CD4-Positivos/efeitos dos fármacos , Antígenos CD8/efeitos dos fármacos , Antígenos CD8/metabolismo , Cardiomegalia/induzido quimicamente , Dipeptidil Peptidase 4/efeitos dos fármacos , Dipeptidil Peptidase 4/metabolismo , Ecocardiografia , Fibrose/induzido quimicamente , Expressão Gênica/efeitos dos fármacos , Coração/fisiopatologia , Inflamação , Interleucina-17/metabolismo , Interleucina-18/metabolismo , Linfócitos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos , Proteínas Proto-Oncogênicas c-jun/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-jun/metabolismo , Transdução de Sinais , Vasoconstritores/toxicidade
6.
Metabolism ; 74: 32-40, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28764846

RESUMO

OBJECTIVE: Aortic vascular stiffness has been implicated in the development of cardiovascular disease (CVD) and chronic kidney disease (CKD) in obese individuals. However, the mechanism promoting these adverse effects are unclear. In this context, promotion of obesity through consumption of a western diet (WD) high in fat and fructose leads to excess circulating uric acid. There is accumulating data implicating elevated uric acid in the promotion of CVD and CKD. Accordingly, we hypothesized that xanthine oxidase(XO) inhibition with allopurinol would prevent a rise in vascular stiffness and proteinuria in a translationally relevant model of WD-induced obesity. MATERIALS/METHODS: Four-week-old C57BL6/J male mice were fed a WD with excess fat (46%) and fructose (17.5%) with or without allopurinol (125mg/L in drinking water) for 16weeks. Aortic endothelial and extracellular matrix/vascular smooth muscle stiffness was evaluated by atomic force microscopy. Aortic XO activity, 3-nitrotyrosine (3-NT) and aortic endothelial sodium channel (EnNaC) expression were evaluated along with aortic expression of inflammatory markers. In the kidney, expression of toll like receptor 4 (TLR4) and fibronectin were assessed along with evaluation of proteinuria. RESULTS: XO inhibition significantly attenuated WD-induced increases in plasma uric acid, vascular XO activity and oxidative stress, in concert with reductions in proteinuria. Further, XO inhibition prevented WD-induced increases in aortic EnNaC expression and associated endothelial and subendothelial stiffness. XO inhibition also reduced vascular pro-inflammatory and maladaptive immune responses induced by consumption of a WD. XO inhibition also decreased WD-induced increases in renal TLR4 and fibronectin that associated proteinuria. CONCLUSIONS: Consumption of a WD leads to elevations in plasma uric acid, increased vascular XO activity, oxidative stress, vascular stiffness, and proteinuria all of which are attenuated with allopurinol administration.


Assuntos
Dieta Ocidental , Inflamação/induzido quimicamente , Proteinúria/induzido quimicamente , Ácido Úrico/sangue , Rigidez Vascular/efeitos dos fármacos , Alopurinol/administração & dosagem , Alopurinol/farmacologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ácido Úrico/farmacologia , Xantina Oxidase/antagonistas & inibidores
7.
Cardiovasc Diabetol ; 16(1): 61, 2017 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-28476142

RESUMO

BACKGROUND: Diastolic dysfunction (DD), a hallmark of obesity and primary defect in heart failure with preserved ejection fraction, is a predictor of future cardiovascular events. We previously reported that linagliptin, a dipeptidyl peptidase-4 inhibitor, improved DD in Zucker Obese rats, a genetic model of obesity and hypertension. Here we investigated the cardioprotective effects of linagliptin on development of DD in western diet (WD)-fed mice, a clinically relevant model of overnutrition and activation of the renin-angiotensin-aldosterone system. METHODS: Female C56Bl/6 J mice were fed an obesogenic WD high in fat and simple sugars, and supplemented or not with linagliptin for 16 weeks. RESULTS: WD induced oxidative stress, inflammation, upregulation of Angiotensin II type 1 receptor and mineralocorticoid receptor (MR) expression, interstitial fibrosis, ultrastructural abnormalities and DD. Linagliptin inhibited cardiac DPP-4 activity and prevented molecular impairments and associated functional and structural abnormalities. Further, WD upregulated the expression of TRAF3IP2, a cytoplasmic adapter molecule and a regulator of multiple inflammatory mediators. Linagliptin inhibited its expression, activation of its downstream signaling intermediates NF-κB, AP-1 and p38-MAPK, and induction of multiple inflammatory mediators and growth factors that are known to contribute to development and progression of hypertrophy, fibrosis and contractile dysfunction. Linagliptin also inhibited WD-induced collagens I and III expression. Supporting these in vivo observations, linagliptin inhibited aldosterone-mediated MR-dependent oxidative stress, upregulation of TRAF3IP2, proinflammatory cytokine, and growth factor expression, and collagen induction in cultured primary cardiac fibroblasts. More importantly, linagliptin inhibited aldosterone-induced fibroblast activation and migration. CONCLUSIONS: Together, these in vivo and in vitro results suggest that inhibition of DPP-4 activity by linagliptin reverses WD-induced DD, possibly by targeting TRAF3IP2 expression and its downstream inflammatory signaling.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Cardiomiopatias/prevenção & controle , Dieta Ocidental/efeitos adversos , Dipeptidil Peptidase 4/metabolismo , Inibidores da Dipeptidil Peptidase IV/farmacologia , Linagliptina/farmacologia , Miocardite/prevenção & controle , Miocárdio/enzimologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Cardiomiopatias/enzimologia , Cardiomiopatias/etiologia , Cardiomiopatias/fisiopatologia , Células Cultivadas , Diástole , Modelos Animais de Doenças , Regulação para Baixo , Feminino , Fibrose , Camundongos Endogâmicos C57BL , Miocardite/enzimologia , Miocardite/etiologia , Miocardite/fisiopatologia , Miocárdio/ultraestrutura , NF-kappa B/metabolismo , Estresse Nitrosativo/efeitos dos fármacos , Obesidade/etiologia , Estresse Oxidativo/efeitos dos fármacos , Recuperação de Função Fisiológica , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Fator de Transcrição AP-1/metabolismo , Disfunção Ventricular Esquerda/enzimologia , Disfunção Ventricular Esquerda/fisiopatologia , Disfunção Ventricular Esquerda/prevenção & controle , Função Ventricular Esquerda/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
8.
Am J Physiol Regul Integr Comp Physiol ; 313(2): R67-R77, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28539355

RESUMO

Consumption of a high-fat, high-fructose diet [Western diet (WD)] promotes vascular stiffness, a critical factor in the development of cardiovascular disease (CVD). Obese and diabetic women exhibit greater arterial stiffness than men, which contributes to the increased incidence of CVD in these women. Furthermore, high-fructose diets result in elevated plasma concentrations of uric acid via xanthine oxidase (XO) activation, and uric acid elevation is also associated with increased vascular stiffness. However, the mechanisms by which increased xanthine oxidase activity and uric acid contribute to vascular stiffness in obese females remain to be fully uncovered. Accordingly, we examined the impact of XO inhibition on endothelial function and vascular stiffness in female C57BL/6J mice fed a WD or regular chow for 16 wk. WD feeding resulted in increased arterial stiffness, measured by atomic force microscopy in aortic explants (16.19 ± 1.72 vs. 5.21 ± 0.54 kPa, P < 0.05), as well as abnormal aortic endothelium-dependent and -independent vasorelaxation. XO inhibition with allopurinol (widely utilized in the clinical setting) substantially improved vascular relaxation and attenuated stiffness (16.9 ± 0.50 vs. 3.44 ± 0.50 kPa, P < 0.05) while simultaneously lowering serum uric acid levels (0.55 ± 0.98 vs. 0.21 ± 0.04 mg/dL, P < 0.05). In addition, allopurinol improved WD-induced markers of fibrosis and oxidative stress in aortic tissue, as analyzed by immunohistochemistry and transmission electronic microscopy. Collectively, these results demonstrate that XO inhibition protects against WD-induced vascular oxidative stress, fibrosis, impaired vasorelaxation, and aortic stiffness in females. Furthermore, excessive oxidative stress resulting from XO activation appears to play a key role in mediating vascular dysfunction induced by chronic exposure to WD consumption in females.


Assuntos
Alopurinol/administração & dosagem , Aorta/fisiologia , Dieta Ocidental , Ácido Úrico/sangue , Rigidez Vascular/fisiologia , Vasodilatação/fisiologia , Xantina Oxidase/metabolismo , Animais , Aorta/efeitos dos fármacos , Inibidores Enzimáticos/administração & dosagem , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Rigidez Vascular/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos , Sistema Vasomotor/efeitos dos fármacos , Sistema Vasomotor/fisiologia , Xantina Oxidase/antagonistas & inibidores
9.
Endocrinology ; 158(6): 1875-1885, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28430983

RESUMO

The role of estrogen receptor-α (ERα) signaling in the vasculature of females has been described under different experimental conditions and our group recently reported that lack of endothelial cell (EC) ERα in female mice fed a Western diet (WD) results in amelioration of vascular stiffness. Conversely, the role of ERα in the male vasculature in this setting has not been explored. In conditions of overnutrition and insulin resistance, augmented arterial stiffness, endothelial dysfunction, and arterial remodeling contribute to the development of cardiovascular disease. Here, we used a rodent model of decreased ERα expression in ECs [endothelial cell estrogen receptor-α knockout (EC-ERαKO)] to test the hypothesis that, similar to our findings in females, loss of ERα signaling in the endothelium of insulin-resistant males would result in decreased arterial stiffness. EC-ERαKO male mice and same-sex littermates were fed a WD (high in fructose and fat) for 20 weeks and then assessed for vascular function and stiffness. EC-ERαKO mice were heavier than littermates but exhibited decreased vascular stiffness without differences in endothelial-dependent vasodilatory responses. Mesenteric arteries from EC-ERαKO mice had significantly increased diameters, wall cross-sectional areas, and mean wall thicknesses, indicative of outward hypertrophic remodeling. This remodeling paralleled an increased vessel wall content of collagen and elastin, inhibition of matrix metalloproteinase activation and a decrease of the incremental modulus of elasticity. In addition, internal elastic lamina fenestrae were more abundant in the EC-ERαKO mice. In conclusion, loss of endothelial ERα reduces vascular stiffness in male mice fed a WD with an associated outward hypertrophic remodeling of resistance arteries.


Assuntos
Dieta Ocidental/efeitos adversos , Receptor alfa de Estrogênio/genética , Remodelação Vascular/genética , Rigidez Vascular/genética , Animais , Células Cultivadas , Feminino , Masculino , Artérias Mesentéricas/fisiopatologia , Camundongos , Camundongos Knockout , Vasodilatação/genética
10.
Cardiorenal Med ; 7(1): 60-65, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27994603

RESUMO

Phosphorus is a key component of bone, and a deficiency results in poor mineralization along with other systemic symptoms of hypophosphatemia. Various causes of hypophosphatemia with renal wasting of phosphorus have been identified. These include the Fanconi syndrome, various genetic mutations of fibroblast growth factor 23 (FGF23) handling and the sodium/phosphate cotransporter, and those due to FGF23 secretion by mesenchymal tumors. Depending on the cause, vitamin D metabolism may also be impaired, which may amplify the deficiency in phosphorus and render treatment more challenging. Here, we report a case of hypophosphatemia and multiple stress fractures in a 20-year-old male college student living with chronic bone pain and anxiety about suffering further fractures. We further review the literature regarding this spectrum.

12.
Int J Mol Sci ; 17(5)2016 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-27213360

RESUMO

Proteinuria is a marker of incipient kidney injury in many disorders, including obesity. Previously, we demonstrated that megalin, a receptor endocytotic protein in the proximal tubule, is downregulated in obese mice, which was prevented by inhibition of dipeptidyl protease 4 (DPP4). Obesity is thought to be associated with upregulation of intra-renal angiotensin II (Ang II) signaling via the Ang II Type 1 receptor (AT1R) and Ang II suppresses megalin expression in proximal tubule cells in vitro. Therefore, we tested the hypothesis that Ang II will suppress megalin protein via activation of DPP4. We used Ang II (200 ng/kg/min) infusion in mice and Ang II (10(-8) M) treatment of T35OK-AT1R proximal tubule cells to test our hypothesis. Ang II-infused mouse kidneys displayed increases in DPP4 activity and decreases in megalin. In proximal tubule cells, Ang II stimulated DPP4 activity concurrent with suppression of megalin. MK0626, a DPP4 inhibitor, partially restored megalin expression similar to U0126, a mitogen activated protein kinase (MAPK)/extracellular regulated kinase (ERK) kinase kinase (MEK) 1/2 inhibitor and AG1478, an epidermal growth factor receptor (EGFR) inhibitor. Similarly, Ang II-induced ERK phosphorylation was suppressed with MK0626 and Ang II-induced DPP4 activity was suppressed by U0126. Therefore, our study reveals a cross talk between AT1R signaling and DPP4 activation in the regulation of megalin and underscores the significance of targeting DPP4 in the prevention of obesity related kidney injury progression.


Assuntos
Angiotensina II/metabolismo , Dipeptidil Peptidase 4/metabolismo , Regulação da Expressão Gênica , Túbulos Renais Proximais/metabolismo , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/biossíntese , Sistema de Sinalização das MAP Quinases , Angiotensina II/farmacologia , Animais , Linhagem Celular , Inibidores Enzimáticos/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Masculino , Camundongos , Camundongos Obesos , Obesidade/complicações , Obesidade/metabolismo , Insuficiência Renal/etiologia , Insuficiência Renal/metabolismo
13.
J Physiol ; 594(18): 5271-84, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27104887

RESUMO

KEY POINTS: Physiologically relevant rodent models of non-alcoholic steatohepatitis (NASH) that resemble the human condition are limited. Exercise training and energy restriction are first-line recommendations for the treatment of NASH. Hyperphagic Otsuka Long-Evans Tokushima fatty rats fed a western diet high in fat, sucrose and cholesterol for 24 weeks developed a severe NASH with fibrosis phenotype. Moderate intensity exercise training and modest energy restriction provided some improvement in the histological features of NASH that coincided with alterations in markers of hepatic stellate cell activation and extracellular matrix remodelling. The present study highlights the importance of lifestyle modification, including exercise training and energy restriction, in the regulation of advanced liver disease. ABSTRACT: The incidence of non-alcoholic steatohepatitis (NASH) is rising but the efficacy of lifestyle modifications to improve NASH-related outcomes remain unclear. We hypothesized that a western diet (WD) would induce NASH in the Otsuka Long-Evans Tokushima Fatty (OLETF) rat and that lifestyle modification would improve this condition. Eight-week-old Long-Evans Tokushima Otsuka (L) and OLETF (O) rats consumed a control diet (10% kcal fat, 3.5% sucrose) or a WD (45% kcal fat, 17% sucrose, 1% cholesterol) for 24 weeks. At 20 weeks of age, additional WD-fed OLETFs were randomized to sedentary (O-SED), food restriction (O-FR; ∼25% kcal reduction vs. O-SED) or exercise training (O-EX; treadmill running 20 m min(-1) with a 15% incline, 60 min day(-1) , 5 days week(-1) ) conditions for 12 weeks. WD induced a NASH phenotype in OLETFs characterized by hepatic fibrosis (collagen 1α1 mRNA and hydroxyproline content), as well as elevated inflammation and non-alcoholic fatty liver disease activity scores, and hepatic stellate cell activation (α-smooth muscle actin) compared to Long-Evans Tokushima Otsuka rats. FR and EX modestly improved NASH-related fibrosis markers (FR: hydroxyproline content, P < 0.01; EX: collagen 1α1 mRNA, P < 0.05; both: fibrosis score, P < 0.01) and inflammation (both: inflammation score; FR: interleukin-1ß and tumor necrosis factor α) vs. O-SED. FR reduced hepatic stellate cell activation markers (transforming growth factor-ß protein and α-smooth muscle actin mRNA), whereas EX increased the hepatic stellate cell senescence marker CCN1 (P < 0.01 vs. O-SED). Additionally, both FR and EX normalized extracellular matrix remodelling markers to levels similar to L-WD (P > 0.05). Although neither EX nor FR led to complete resolution of the WD-induced NASH phenotype, both independently benefitted liver fibrosis via altered hepatic stellate cell activation and extracellular matrix remodelling.


Assuntos
Restrição Calórica , Cirrose Hepática/terapia , Hepatopatia Gordurosa não Alcoólica/terapia , Condicionamento Físico Animal , Animais , Antígenos CD/genética , Antígenos de Diferenciação Mielomonocítica/genética , Colesterol na Dieta/efeitos adversos , Citocinas/genética , Dieta Hiperlipídica/efeitos adversos , Dieta Ocidental/efeitos adversos , Sacarose Alimentar/efeitos adversos , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/dietoterapia , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Hepatopatia Gordurosa não Alcoólica/dietoterapia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , RNA Mensageiro/metabolismo , Ratos Endogâmicos OLETF
14.
Cardiorenal Med ; 6(2): 129-34, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26989398

RESUMO

BACKGROUND: Multiple endocrine neoplasia (MEN) type 1 syndrome is an uncommon inherited disorder characterized by the occurrence of tumors involving two or more endocrine glands. These tumors include pheochromocytoma, adrenal cortical and neuroendocrine tumors including (bronchopulmonary, thymic, gastric), lipomas, angiofibromas, collagenomas, and meningiomas. MEN-4 is very rare and has been characterized by the occurrence of parathyroid and anterior pituitary tumors in association with tumors of the adrenals, kidneys, and reproductive organs. SUMMARY: We report the case of a 40-year-old male without significant family history of endocrine disease who was found to have primary hyperparathyroidism, a pituitary tumor causing acromegaly, thyroid cancer, renal cell carcinoma, and pancreatic cysts. We posit that this represents a new version of MEN-4. While renal tumors (angiomyolipoma) have been reported as part of the MEN-4 phenotype, to our knowledge, this is the first case reported of the association of MEN-1 and/or MEN-4 phenotype with this unique constellation of tumors, including renal cell carcinoma. Interestingly, this patient tested negative (DNA sequencing/deletion) for MEN-1 (menin), MEN-4 (CDKN1B) and VHL genes. KEY MESSAGE: Thus, while this case has clinical characteristics consistent with either MEN-1 or MEN-4, it may represent a unique genetic variant.

15.
Endocrinology ; 157(4): 1590-600, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26872089

RESUMO

Consumption of a diet high in fat and refined carbohydrates (Western diet [WD]) is associated with obesity and insulin resistance, both major risk factors for cardiovascular disease (CVD). In women, obesity and insulin resistance abrogate the protection against CVD likely afforded by estrogen signaling through estrogen receptor (ER)α. Indeed, WD in females results in increased vascular stiffness, which is independently associated with CVD. We tested the hypothesis that loss of ERα signaling in the endothelium exacerbates WD-induced vascular stiffening in female mice. We used a novel model of endothelial cell (EC)-specific ERα knockout (EC-ERαKO), obtained after sequential crossing of the ERα double floxed mice and VE-Cadherin Cre-recombinase mice. Ten-week-old females, EC-ERαKO and aged-matched genopairs were fed either a regular chow diet (control diet) or WD for 8 weeks. Vascular stiffness was measured in vivo by pulse wave velocity and ex vivo in aortic explants by atomic force microscopy. In addition, vascular reactivity was assessed in isolated aortic rings. Initial characterization of the model fed a control diet did not reveal changes in whole-body insulin sensitivity, aortic vasoreactivity, or vascular stiffness in the EC-ERαKO mice. Interestingly, ablation of ERα in ECs reduced WD-induced vascular stiffness and improved endothelial-dependent dilation. In the setting of a WD, endothelial ERα signaling contributes to vascular stiffening in females. The precise mechanisms underlying the detrimental effects of endothelial ERα in the setting of a WD remain to be elucidated.


Assuntos
Dieta Ocidental , Células Endoteliais/metabolismo , Receptor alfa de Estrogênio/metabolismo , Rigidez Vascular/fisiologia , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Aorta Torácica/metabolismo , Aorta Torácica/fisiologia , Caderinas/genética , Caderinas/metabolismo , Receptor alfa de Estrogênio/genética , Feminino , Artéria Femoral/fisiologia , Immunoblotting , Camundongos Knockout , Camundongos Transgênicos , Microscopia de Força Atômica , Análise de Onda de Pulso , Fator de Crescimento Transformador beta/metabolismo , Rigidez Vascular/genética , Vasodilatação
18.
PLoS One ; 10(4): e0123852, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25859655

RESUMO

Excessive activation of gelatinases (MMP-2/-9) is a key cause of detrimental outcomes in neurodegenerative diseases. A single-dimension zymography has been widely used to determine gelatinase expression and activity, but this method is inadequate in resolving complex enzyme isoforms, because gelatinase expression and activity could be modified at transcriptional and posttranslational levels. In this study, we investigated gelatinase isoforms under in vitro and in vivo conditions using two-dimensional (2D) gelatin zymography electrophoresis, a protocol allowing separation of proteins based on isoelectric points (pI) and molecular weights. We observed organomercuric chemical 4-aminophenylmercuric acetate-induced activation of MMP-2 isoforms with variant pI values in the conditioned medium of human fibrosarcoma HT1080 cells. Studies with murine BV-2 microglial cells indicated a series of proform MMP-9 spots separated by variant pI values due to stimulation with lipopolysaccharide (LPS). The MMP-9 pI values were shifted after treatment with alkaline phosphatase, suggesting presence of phosphorylated isoforms due to the proinflammatory stimulation. Similar MMP-9 isoforms with variant pI values in the same molecular weight were also found in mouse brains after ischemic and traumatic brain injuries. In contrast, there was no detectable pI differentiation of MMP-9 in the brains of chronic Zucker obese rats. These results demonstrated effective use of 2D zymography to separate modified MMP isoforms with variant pI values and to detect posttranslational modifications under different pathological conditions.


Assuntos
Lesões Encefálicas/enzimologia , Gelatinases/metabolismo , Microglia/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Lesões Encefálicas/diagnóstico , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Linhagem Celular , Meios de Cultivo Condicionados/metabolismo , Modelos Animais de Doenças , Humanos , Isoenzimas , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Inflamação Neurogênica/metabolismo , Ratos
19.
Med Sci Sports Exerc ; 47(3): 556-67, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24983336

RESUMO

BACKGROUND: There is increasing use of high-intensity interval-type exercise training in the management of many lifestyle-related diseases. PURPOSE: This study aimed to test the hypothesis that vigorous-intensity interval exercise is as effective as traditional moderate-intensity aerobic exercise training for nonalcoholic fatty liver disease (NAFLD) outcomes in obese, Otsuka Long-Evans Tokushima Fatty (OLETF) rats. METHODS: OLETF rats (age, 20 wk; n = 8-10 per group) were assigned to sedentary (O-SED), moderate-intensity exercise training (O-MOD EX; 20 m·min(-1), 15% incline, 60 min·d(-1), 5 d·wk(-1) of treadmill running), or vigorous-intensity interval exercise training (O-VIG EX; 40 m·min(-1), 15% incline, 6 × 2.5 min bouts per day, 5 d·wk(-1) of treadmill running) groups for 12 wk. RESULTS: Both MOD EX and VIG EX effectively lowered hepatic triglycerides, serum alanine aminotransferase (ALT), perivenular fibrosis, and hepatic collagen 1α1 messenger RNA (mRNA) expression (vs O-SED, P < 0.05). In addition, both interventions increased hepatic mitochondrial markers (citrate synthase activity and fatty acid oxidation) and suppressed markers of de novo lipogenesis (fatty acid synthase, acetyl coenzyme A carboxylase, Elovl fatty acid elongase 6, and steroyl CoA desaturase-1), whereas only MOD EX increased hepatic mitochondrial Beta-hydroxyacyl-CoA dehydrogenase (ß-HAD) activity and hepatic triglyceride export marker apoB100 and lowered fatty acid transporter CD36 compared with O-SED. Moreover, whereas total hepatic macrophage population markers (CD68 and F4/80 mRNA) did not differ among groups, MOD EX and VIG EX lowered M1 macrophage polarization markers (CD11c, interleukin-1ß, and tumor necrosis factor α mRNA) and MOD EX increased M2 macrophage marker, CD206 mRNA, compared with O-SED. CONCLUSIONS: The accumulation of 15 min·d(-1) of VIG EX for 12 wk had similar effectiveness as 60 min·d(-1) of MOD EX in the management of NAFLD in OLETF rats. These findings may have important health outcome implications as we work to design better exercise training programs for patients with NAFLD.


Assuntos
Terapia por Exercício/métodos , Hepatopatia Gordurosa não Alcoólica/terapia , Condicionamento Físico Animal , Animais , Glicemia/metabolismo , Colágeno Tipo I/metabolismo , Modelos Animais de Doenças , Glicólise , Coração/anatomia & histologia , Lipídeos/sangue , Lipogênese , Fígado/metabolismo , Masculino , Mitocôndrias Hepáticas/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Tamanho do Órgão , RNA Mensageiro/metabolismo , Ratos Endogâmicos OLETF , Triglicerídeos/metabolismo , Redução de Peso
20.
Hypertension ; 65(3): 531-9, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25489061

RESUMO

The rising obesity rates parallel increased consumption of a Western diet, high in fat and fructose, which is associated with increased uric acid. Population-based data support that elevated serum uric acids are associated with left ventricular hypertrophy and diastolic dysfunction. However, the mechanism by which excess uric acid promotes these maladaptive cardiac effects has not been explored. In assessing the role of Western diet-induced increases in uric acid, we hypothesized that reductions in uric acid would prevent Western diet-induced development of cardiomyocyte hypertrophy, cardiac stiffness, and impaired diastolic relaxation by reducing growth and profibrotic signaling pathways. Four-weeks-old C57BL6/J male mice were fed excess fat (46%) and fructose (17.5%) with or without allopurinol (125 mg/L), a xanthine oxidase inhibitor, for 16 weeks. The Western diet-induced increases in serum uric acid along with increases in cardiac tissue xanthine oxidase activity temporally related to increases in body weight, fat mass, and insulin resistance without changes in blood pressure. The Western diet induced cardiomyocte hypertrophy, myocardial oxidative stress, interstitial fibrosis, and impaired diastolic relaxation. Further, the Western diet enhanced activation of the S6 kinase-1 growth pathway and the profibrotic transforming growth factor-ß1/Smad2/3 signaling pathway and macrophage proinflammatory polarization. All results improved with allopurinol treatment, which lowered cardiac xanthine oxidase as well as serum uric acid levels. These findings support the notion that increased production of uric acid with intake of a Western diet promotes cardiomyocyte hypertrophy, inflammation, and oxidative stress that lead to myocardial fibrosis and associated impaired diastolic relaxation.


Assuntos
Dieta Ocidental/efeitos adversos , Hipertrofia Ventricular Esquerda/etiologia , Hipertrofia Ventricular Esquerda/fisiopatologia , Ácido Úrico/sangue , Disfunção Ventricular Esquerda/etiologia , Disfunção Ventricular Esquerda/fisiopatologia , Alopurinol/farmacologia , Animais , Biomarcadores/sangue , Gorduras na Dieta/efeitos adversos , Sacarose Alimentar/efeitos adversos , Modelos Animais de Doenças , Fibrose , Hipertrofia Ventricular Esquerda/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miocárdio/enzimologia , Miocárdio/patologia , Miocárdio/ultraestrutura , Estresse Oxidativo/fisiologia , Transdução de Sinais/fisiologia , Disfunção Ventricular Esquerda/sangue , Xantina Oxidase/antagonistas & inibidores , Xantina Oxidase/efeitos dos fármacos , Xantina Oxidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA