Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur J Pharm Biopharm ; 199: 114280, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38588828

RESUMO

Helicobacter pylori (H. pylori) is a microorganism directly linked to severe clinical conditions affecting the stomach. The virulence factors and its ability to form biofilms increase resistance to conventional antibiotics, growing the need for new substances and strategies for the treatment of H. pylori infection. The trans-resveratrol (RESV), a bioactive polyphenol from natural sources, has a potential activity against this gastric pathogen. Here, Chitosan nanoparticles (NP) containing RESV (RESV-NP) were developed for H. pylori management. The RESV-NP were prepared using the ionic gelation method and characterized by Dynamic Light Scattering (DLS), Nanoparticle Tracking Analysis (NTA) and, Cryogenic Transmission Electron Microscopy (Cryo - TEM). The encapsulation efficiency (EE) and in vitro release rate of RESV were quantified using high-performance liquid chromatography (HPLC). RESV-NP performance against H. pylori was evaluated by the quantification of the minimum inhibitory/bactericidal concentrations (MIC/MBC), time to kill, alterations in H. pylori morphology in its planktonic form, effects against H. pylori biofilm and in an in vitro infection model. RESV-NP cytotoxicity was evaluated against AGS and MKN-74 cell lines and by hemolysis assay. Acute toxicity was tested using Galleria mellonella model assays. RESV-NP showed a spherical shape, size of 145.3 ± 24.7 nm, polydispersity index (PDI) of 0.28 ± 0.008, and zeta potential (ZP) of + 16.9 ± 1.81 mV in DLS, while particle concentration was 3.12 x 1011 NP/mL (NTA). RESV-NP EE was 72 %, with full release within the first 5 min. In microbiological assays, RESV-NP presented a MIC/MBC of 3.9 µg/mL, a time to kill of 24 h for complete eradication of H. pylori. At a concentration of 2xMIC (7.8 µg/mL), RESV-NP completely eradicated the H. pylori biofilm, and in an in vitro infection model, RESV-NP (4xMIC - 15.6 µg/mL) showed a significant decrease in bacterial load (1 Log10CFU/mL) when compared to the H. pylori J99 control. In addition, they did not demonstrate a toxic character at MIC concentration for both cell lines. The use of the RESV-NP with mucoadhesion profile is an interesting strategy for oral administration of substances targeting gastric disorders, linked to H. pylori infections.


Assuntos
Antibacterianos , Biofilmes , Quitosana , Infecções por Helicobacter , Helicobacter pylori , Testes de Sensibilidade Microbiana , Nanopartículas , Resveratrol , Resveratrol/administração & dosagem , Resveratrol/farmacologia , Helicobacter pylori/efeitos dos fármacos , Quitosana/química , Nanopartículas/química , Infecções por Helicobacter/tratamento farmacológico , Infecções por Helicobacter/microbiologia , Biofilmes/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/administração & dosagem , Humanos , Animais , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Estilbenos/farmacologia , Estilbenos/administração & dosagem , Estilbenos/química , Tamanho da Partícula
2.
J Drug Target ; 29(10): 1029-1047, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33729081

RESUMO

Peptic ulcer disease (PUD) is a common condition that is induced by acid and pepsin causing lesions in the mucosa of the duodenum and stomach. The pathogenesis of PUD is a many-sided scenario, which involves an imbalance between protective factors, such as prostaglandins, blood flow, and cell renewal, and aggressive ones, like alcohol abuse, smoking, Helicobacter pylori colonisation, and the use of non-steroidal anti-inflammatory drugs. The standard oral treatment is well established; however, several problems can decrease the success of this therapy, such as drug degradation in the gastric environment, low oral bioavailability, and lack of vectorisation to the target site. In this way, the use of strategies to improve the effectiveness of these conventional drugs becomes interesting. Currently, the use of drug delivery systems is being explored as an option to improve the drug therapy limitations, such as antimicrobial resistance, low bioavailability, molecule degradation in an acid environment, and low concentration of the drug at the site of action. This article provides a review of oral drug delivery systems looking for improving the treatment of PUD.


Assuntos
Antiulcerosos/administração & dosagem , Sistemas de Liberação de Medicamentos , Úlcera Péptica/tratamento farmacológico , Administração Oral , Animais , Antiulcerosos/farmacocinética , Disponibilidade Biológica , Mucosa Gástrica/patologia , Humanos , Úlcera Péptica/etiologia , Úlcera Péptica/patologia , Fatores de Proteção , Fatores de Risco
3.
Arch Pharm (Weinheim) ; 353(12): e2000146, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32886393

RESUMO

The natural isomers of resveratrol, cis- and trans-resveratrol, are natural phenolic substances synthetized via the shikimate pathway and found in many sources, including grapes, peanuts, blackberries, pistachios, cacao, cranberries, and jackfruits. They have functional and pharmacological properties such as anticarcinogenic, antidiabetic, anti-inflammatory, and cardioprotective activities. The aim of this article is to review the data published on resveratrol and its isomers, and their biosynthesis in plants, food sources, health and toxic effects, and the excretion of their metabolites. Due to its contribution to the promotion of human health, it is convenient to gather more knowledge about its functional properties, food sources, and the interactions with the human body during the processes of eating, digestion, absorption, biotransformation, and excretion, to combine this information to improve the understanding of these substances.


Assuntos
Anti-Inflamatórios/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Fármacos Cardiovasculares/farmacologia , Alimentos , Hipoglicemiantes/farmacologia , Plantas/metabolismo , Resveratrol/farmacologia , Animais , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacocinética , Anti-Inflamatórios/toxicidade , Antineoplásicos Fitogênicos/metabolismo , Antineoplásicos Fitogênicos/farmacocinética , Antineoplásicos Fitogênicos/toxicidade , Disponibilidade Biológica , Biotransformação , Fármacos Cardiovasculares/metabolismo , Fármacos Cardiovasculares/farmacocinética , Fármacos Cardiovasculares/toxicidade , Vias de Eliminação de Fármacos , Absorção Gastrointestinal , Humanos , Hipoglicemiantes/metabolismo , Hipoglicemiantes/farmacocinética , Hipoglicemiantes/toxicidade , Isomerismo , Resveratrol/metabolismo , Resveratrol/farmacocinética , Resveratrol/toxicidade
4.
Int J Mol Sci ; 17(8)2016 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-27517903

RESUMO

BACKGROUND: The incidence of fungal infections, especially those caused by Candida yeasts, has increased over the last two decades. However, the indicated therapy for fungal control has limitations. Hence, medicinal plants have emerged as an alternative in the search for new antifungal agents as they present compounds, such as essential oils, with important biological effects. Published data demonstrate important pharmacological properties of the essential oil of Cymbopogon nardus (L.) Rendle; these include anti-tumor, anti-nociceptive, and antibacterial activities, and so an investigation of this compound against pathogenic fungi is interesting. OBJECTIVE: The aim of this study was to evaluate the chemical composition and biological potential of essential oil (EO) obtained from the leaves of C. nardus focusing on its antifungal profile against Candida species. METHODS: The EO was obtained by hydrodistillation and analyzed by gas chromatography-mass spectrometry (GC-MS). Testing of the antifungal potential against standard and clinical strains was performed by determining the minimal inhibitory concentration (MIC), time-kill, inhibition of Candida albicans hyphae growth, and inhibition of mature biofilms. Additionally, the cytotoxicity was investigated by the IC50 against HepG-2 (hepatic) and MRC-5 (fibroblast) cell lines. RESULTS: According to the chemical analysis, the main compounds of the EO were the oxygen-containing monoterpenes: citronellal, geranial, geraniol, citronellol, and neral. The results showed important antifungal potential for all strains tested with MIC values ranging from 250 to 1000 µg/mL, except for two clinical isolates of C. tropicalis (MIC > 1000 µg/mL). The time-kill assay showed that the EO inhibited the growth of the yeast and inhibited hyphal formation of C. albicans strains at concentrations ranging from 15.8 to 1000 µg/mL. Inhibition of mature biofilms of strains of C. albicans, C. krusei and C. parapsilosis occurred at a concentration of 10× MIC. The values of the IC50 for the EO were 96.6 µg/mL (HepG-2) and 33.1 µg/mL (MRC-5). CONCLUSION: As a major virulence mechanism is attributed to these types of infections, the EO is a promising compound to inhibit Candida species, especially considering its action against biofilm.


Assuntos
Antifúngicos/farmacologia , Candida/efeitos dos fármacos , Cymbopogon/química , Óleos Voláteis/farmacologia , Antifúngicos/química , Cromatografia Gasosa-Espectrometria de Massas , Hifas/efeitos dos fármacos , Concentração Inibidora 50 , Testes de Sensibilidade Microbiana , Óleos Voláteis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA