Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Leukemia ; 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454120

RESUMO

Although Bruton's tyrosine kinase (BTK) inhibitors (BTKi) have significantly improved patient prognosis, mantle cell lymphoma (MCL) is still considered incurable due to primary and acquired resistance. We have recently shown that aberrant expression of the Src-family tyrosine kinase hematopoietic cell kinase (HCK) in MCL correlates with poor prognosis, and that genetic HCK perturbation impairs growth and integrin-mediated adhesion of MCL cells. Here, we show that KIN-8194, a dual inhibitor of BTK and HCK with in vivo activity against Myd88-L265P-driven diffuse large B-cell lymphoma and Waldenström Macroglobulinemia, has a potent growth inhibitory effect in MCL cell lines and primary MCL cells, irrespective of their sensitivity to BTKi (ibrutinib and acalabrutinib). In BTKi-resistant cells this is mediated by inhibition of HCK, which results in repression of AKT-S6 signaling. In addition, KIN-8194 inhibits integrin-mediated adhesion of BTKi-sensitive and insensitive MCL cells to fibronectin and stromal cells in an HCK-dependent manner. Finally, we show that MCL cells with acquired BTKi resistance retain their sensitivity to KIN-8194. Taken together, our data demonstrate that KIN-8194 inhibits growth and integrin-mediated adhesion of BTKi-sensitive MCL cells, as well as MCL cells with primary or acquired BTKi resistance. This renders KIN-8194 a promising novel treatment for MCL patients.

3.
Blood Cancer J ; 13(1): 125, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37591861

RESUMO

MYD88 is the key signaling adaptor-protein for Toll-like and interleukin-1 receptors. A somatic L265P mutation within the Toll/interleukin-1 receptor (TIR) domain of MYD88 is found in 90% of Waldenström macroglobulinemia cases and in a significant subset of diffuse large B-cell lymphomas. MYD88-L265P strongly promotes NF-κB pathway activation, JAK-STAT signaling and lymphoma cell survival. Previous studies have identified other residues of the TIR-domain crucially involved in NF-κB activation, including serine 257 (S257), indicating a potentially important physiological role in the regulation of MYD88 activation. Here, we demonstrate that MYD88 S257 is phosphorylated in B-cell lymphoma cells and that this phosphorylation is required for optimal TLR-induced NF-κB activation. Furthermore, we demonstrate that a phosphomimetic MYD88-S257D mutant promotes MYD88 aggregation, IRAK1 phosphorylation, NF-κB activation and cell growth to a similar extent as the oncogenic L265P mutant. Lastly, we show that expression of MYD88-S257D can rescue cell growth upon silencing of endogenous MYD88-L265P expression in lymphoma cells addicted to oncogenic MYD88 signaling. Our data suggest that the L265P mutation promotes TIR domain homodimerization and NF-κB activation by copying the effect of MY88 phosphorylation at S257, thus providing novel insights into the molecular mechanism underlying the oncogenic activity of MYD88-L265P in B-cell malignancies.


Assuntos
Linfoma Difuso de Grandes Células B , Fator 88 de Diferenciação Mieloide , Humanos , Proteínas Adaptadoras de Transdução de Sinal , Fator 88 de Diferenciação Mieloide/genética , NF-kappa B , Fosforilação
4.
Blood ; 142(5): 446-459, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37172204

RESUMO

Complex karyotypes have been associated with inferior outcomes in chronic lymphocytic leukemia (CLL) treated with chemoimmunotherapy (CIT), whereas their prognostic impact in the context of venetoclax-based treatments is still debated. In this prospective analysis on karyotype complexity in CLL, we evaluated the impact of complex (≥3 chromosomal aberrations [CAs], CKTs) and highly complex karyotypes (≥5 CAs; hCKTs) as well as specific aberrations in previously untreated patients without TP53 aberrations undergoing either CIT or time-limited venetoclax-based therapies in the phase 3 GAIA/CLL13 trial. Karyotype analyses were available for 895 of 926 patients (96.7%), of whom 153 (17%) had a CKT and 43 (5%) hCKT. In the CIT arm, CKT was associated with shorter progression-free survival (PFS) (hazard ratio [HR] 2.58; 95% confidence interval [95% CI], 1.54-4.32; P < .001) and overall survival (HR, 3.25; 95% CI, 1.03-10.26; P = .044). In the pooled venetoclax arms, a multivariable analysis identified hCKTs (HR, 1.96; 95% CI, 1.03-3.72; P = .041), but not CKTs, as independent adverse prognosticators for PFS. The presence of translocations (unbalanced and/or balanced) was also independently associated with shorter PFSs in the venetoclax arms. CIT led to the acquisition of additional CAs (mean CAs, 2.0-3.4; from baseline to CLL progression), whereas karyotype complexity remained stable after venetoclax-based treatments (2.0, both time points). This analysis establishes highly complex karyotypes and translocations as adverse prognostic factors in the context of venetoclax-based combination treatments. The findings of this study support the incorporation of karyotyping into the standard diagnostic workup of CLL, because it identifies patients at high risk of poor treatment outcomes and thereby improves prognostication. This trial was registered at www.clinicaltrials.gov as #NCT02950051.


Assuntos
Leucemia Linfocítica Crônica de Células B , Humanos , Cariótipo Anormal , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Cariótipo , Cariotipagem , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/genética , Prognóstico
5.
Blood Cancer J ; 13(1): 37, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36922488

RESUMO

The paracaspase mucosa-associated lymphoid tissue 1 (MALT1) is a protease and scaffold protein essential in propagating B-cell receptor (BCR) signaling to NF-κB. The deubiquitinating enzyme cylindromatosis (CYLD) is a recently discovered MALT1 target that can negatively regulate NF-κB activation. Here, we show that low expression of CYLD is associated with inferior prognosis of diffuse large B-cell lymphoma (DLBCL) and mantle cell lymphoma (MCL) patients, and that chronic BCR signaling propagates MALT1-mediated cleavage and, consequently, inactivation and rapid proteasomal degradation of CYLD. Ectopic overexpression of WT CYLD or a MALT1-cleavage resistant mutant of CYLD reduced phosphorylation of IκBα, repressed transcription of canonical NF-κB target genes and impaired growth of BCR-dependent lymphoma cell lines. Furthermore, silencing of CYLD expression rendered BCR-dependent lymphoma cell lines less sensitive to inhibition of NF-κΒ signaling and cell proliferation by BCR pathway inhibitors, e.g., the BTK inhibitor ibrutinib, indicating that these effects are partially mediated by CYLD. Taken together, our findings identify an important role for MALT1-mediated CYLD cleavage in BCR signaling, NF-κB activation and cell proliferation, which provides novel insights into the underlying molecular mechanisms and clinical potential of inhibitors of MALT1 and ubiquitination enzymes as promising therapeutics for DLBCL, MCL and potentially other B-cell malignancies.


Assuntos
Enzima Desubiquitinante CYLD , Linfoma Difuso de Grandes Células B , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa , NF-kappa B , Humanos , Caspases/metabolismo , Enzima Desubiquitinante CYLD/genética , Enzima Desubiquitinante CYLD/metabolismo , Linfoma Difuso de Grandes Células B/patologia , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/genética , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/metabolismo , NF-kappa B/metabolismo , Receptores de Antígenos de Linfócitos B , Transdução de Sinais/fisiologia
6.
Oncogenesis ; 12(1): 6, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36755015

RESUMO

Impairments in protein folding in the endoplasmic reticulum (ER) lead to a condition called ER stress, which can trigger apoptosis via the mitochondrial or the death receptor (extrinsic) pathway. There is controversy concerning involvement of the death receptor (DR)4 and DR5-Caspase-8 -Bid pathway in ER stress-mediated cell death, and this axis has not been fully studied in B-cell malignancies. Using three B-cell lines from Mantle Cell Lymphoma, Waldenström's macroglobulinemia and Multiple Myeloma origins, we engineered a set of CRISPR KOs of key components of these cell death pathways to address this controversy. We demonstrate that DR4 and/or DR5 are essential for killing via TRAIL, however, they were dispensable for ER-stress induced-cell death, by Thapsigargin, Brefeldin A or Bortezomib, as were Caspase-8 and Bid. In contrast, the deficiency of Bax and Bak fully protected from ER stressors. Caspase-8 and Bid were cleaved upon ER-stress stimulation, but this was DR4/5 independent and rather a result of mitochondrial-induced feedback loop subsequent to Bax/Bak activation. Finally, combined activation of the ER-stress and TRAIL cell-death pathways was synergistic with putative clinical relevance for B-cell malignancies.

7.
Haematologica ; 108(3): 797-810, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36226498

RESUMO

BCL-2 family proteins are frequently aberrantly expressed in mantle cell lymphoma (MCL). Recently, the BCL-2-specific inhibitor venetoclax has been approved by the US Food and Drug Administration for chronic lymphocytic leukemia (CLL) and acute myeloid leukemia (AML). In MCL, venetoclax has shown promising efficacy in early clinical trials; however, a significant subset of patients is resistant. By conducting a kinome-centered CRISPR-Cas9 knockout sensitizer screen, we identified casein kinase 2 (CK2) as a major regulator of venetoclax resistance in MCL. Interestingly, CK2 is over-expressed in MCL and high CK2 expression is associated with poor patient survival. Targeting of CK2, either by inducible short hairpin RNA (shRNA)-mediated knockdown of CK2 or by the CK2-inhibitor silmitasertib, did not affect cell viability by itself, but strongly synergized with venetoclax in both MCL cell lines and primary samples, also if combined with ibrutinib. Furthermore, targeting of CK2 reduced MCL-1 levels, which involved impaired MCL-1 translation by inhibition of eIF4F complex assembly, without affecting BCL-2 and BCL-XL expression. Combined, this results in enhanced BCL-2 dependence and, consequently, venetoclax sensitization. In cocultures, targeting of CK2 overcame stroma-mediated venetoclax resistance of MCL cells. Taken together, our findings indicate that targeting of CK2 sensitizes MCL cells to venetoclax through downregulation of MCL-1. These novel insights provide a strong rationale for combining venetoclax with CK2 inhibition as therapeutic strategy for MCL patients.


Assuntos
Antineoplásicos , Linfoma de Célula do Manto , Humanos , Adulto , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Linfoma de Célula do Manto/tratamento farmacológico , Linfoma de Célula do Manto/genética , Linfoma de Célula do Manto/metabolismo , Caseína Quinase II/genética , Caseína Quinase II/metabolismo , Regulação para Baixo , Linhagem Celular Tumoral , Proteínas Proto-Oncogênicas c-bcl-2 , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico
8.
Blood Adv ; 7(9): 1697-1712, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-36322819

RESUMO

Metabolic alterations are important cancer-associated features that allow cancer cell transformation and survival under stress conditions. Multiple myeloma (MM) plasma cells show increased glycolysis and oxidative phosphorylation (OXPHOS), which are characteristics associated with recurrent genetic aberrations that drive the proliferation and survival of MM cells. The protein kinase B/AKT acts as a central node in cellular metabolism and is constitutively active in MM cells. Despite the known role of AKT in modulating cellular metabolism, little is known about the downstream factors of AKT that control the metabolic adaptability of MM cells. Here, we demonstrate that negative regulation of the forkhead box O (FOXO) transcription factors (TFs) by AKT is crucial to prevent the metabolic shutdown in MM cells, thus contributing to their metabolic adaptability. Our results demonstrate that the expression of several key metabolic genes involved in glycolysis, the tricarboxylic acid (TCA) cycle, and OXPHOS are repressed by FOXO TFs. Moreover, the FOXO-dependent repression of glycolysis- and TCA-associated genes correlates with a favorable prognosis in a large cohort of patients with MM. Our data suggest that repression of FOXO by AKT is essential to sustain glycolysis and the TCA cycle activity in MM cells and, as such, predicts patient survival.


Assuntos
Mieloma Múltiplo , Proteínas Proto-Oncogênicas c-akt , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Mieloma Múltiplo/genética , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Fosforilação Oxidativa
9.
Bio Protoc ; 12(21)2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36505024

RESUMO

Mature B-cell lymphomas are highly dependent upon the protective lymphoid organ microenvironment for their growth and survival. Targeting integrin-mediated homing and retention of the malignant B cells in the lymphoid organs, using the Bruton's tyrosine kinase (BTK) inhibitor ibrutinib, is a highly efficacious FDA-approved therapy for chronic lymphocytic leukemia (CLL), mantle cell lymphoma (MCL), and Waldenström macroglobulinemia (WM). Unfortunately, a significant subset of patients is intrinsically resistant to ibrutinib or will develop resistance upon prolonged treatment. Here, we describe an unbiased functional genomic CRISPR-Cas9 screening method to identify novel proteins involved in B-cell receptor-controlled integrin-mediated adhesion, which provides novel therapeutic targets to overcome ibrutinib resistance. This screening method is highly flexible and can be easily adapted to identify cell adhesion-regulatory proteins and signaling pathways for other stimuli, adhesion molecules, and cell types. Graphical abstract.

10.
Leukemia ; 36(9): 2165-2176, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35725771

RESUMO

Mantle cell lymphoma (MCL), an aggressive, but incurable B-cell lymphoma, is genetically characterized by the t(11;14) translocation, resulting in the overexpression of Cyclin D1. In addition, deregulation of the B-cell lymphoma-2 (BCL-2) family proteins BCL-2, B-cell lymphoma-extra large (BCL-XL), and myeloid cell leukemia-1 (MCL-1) is highly common in MCL. This renders these BCL-2 family members attractive targets for therapy; indeed, the BCL-2 inhibitor venetoclax (ABT-199), which already received FDA approval for the treatment of chronic lymphocytic leukemia (CLL) and acute myeloid leukemia (AML), shows promising results in early clinical trials for MCL. However, a significant subset of patients show primary resistance or will develop resistance upon prolonged treatment. Here, we describe the underlying mechanisms of venetoclax resistance in MCL, such as upregulation of BCL-XL or MCL-1, and the recent (clinical) progress in the development of inhibitors for these BCL-2 family members, followed by the transcriptional and (post-)translational (dys)regulation of the BCL-2 family proteins, including the role of the lymphoid organ microenvironment. Based upon these insights, we discuss how rational combinations of venetoclax with other therapies can be exploited to prevent or overcome venetoclax resistance and improve MCL patient outcome.


Assuntos
Antineoplásicos , Linfoma de Células B , Linfoma de Célula do Manto , Adulto , Compostos Bicíclicos Heterocíclicos com Pontes , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Humanos , Proteína de Sequência 1 de Leucemia de Células Mieloides , Proteínas Proto-Oncogênicas c-bcl-2 , Sulfonamidas , Microambiente Tumoral , Proteína bcl-X
11.
Nat Commun ; 13(1): 2136, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35440579

RESUMO

The clinical introduction of the Bruton's tyrosine kinase (BTK) inhibitor ibrutinib, which targets B-cell antigen-receptor (BCR)-controlled integrin-mediated retention of malignant B cells in their growth-supportive lymphoid organ microenvironment, provided a major breakthrough in lymphoma and leukemia treatment. Unfortunately, a significant subset of patients is intrinsically resistant or acquires resistance against ibrutinib. Here, to discover novel therapeutic targets, we present an unbiased loss-of-adhesion CRISPR-Cas9 knockout screening method to identify proteins involved in BCR-controlled integrin-mediated adhesion. Illustrating the validity of our approach, several kinases with an established role in BCR-controlled adhesion, including BTK and PI3K, both targets for clinically applied inhibitors, are among the top hits of our screen. We anticipate that pharmacological inhibitors of the identified targets, e.g. PAK2 and PTK2B/PYK2, may have great clinical potential as therapy for lymphoma and leukemia patients. Furthermore, this screening platform is highly flexible and can be easily adapted to identify cell adhesion-regulatory proteins and signaling pathways for other stimuli, adhesion molecules, and cell types.


Assuntos
Sistemas CRISPR-Cas , Leucemia , Tirosina Quinase da Agamaglobulinemia/genética , Tirosina Quinase da Agamaglobulinemia/metabolismo , Adesão Celular/genética , Humanos , Integrinas/metabolismo , Leucemia/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Transdução de Sinais , Microambiente Tumoral
12.
Cancer Res Commun ; 2(5): 330-341, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-36875718

RESUMO

T-cell redirecting bispecific antibodies hold high promise for treatment of B-cell malignancies. B-cell maturation antigen (BCMA) exhibits high expression on normal and malignant mature B cells including plasma cells, which can be enhanced by inhibition of γ-secretase. BCMA is considered a validated target in multiple myeloma but whether mature B-cell lymphomas can be targeted by the BCMAxCD3 T-cell redirector teclistamab is currently unknown. BCMA expression on B-cell non-Hodgkin lymphoma and primary chronic lymphocytic leukemia (CLL) cells was assessed by flow cytometry and/or IHC. To assess teclistamab efficacy, cells were treated with teclistamab in presence of effector cells with/without γ-secretase inhibition. BCMA could be detected on all tested mature B-cell malignancy cell lines, while expression levels varied per tumor type. γ-secretase inhibition universally increased BCMA surface expression. These data were corroborated in primary samples from patients with Waldenstrom's macroglobulinemia, CLL, and diffuse large B-cell lymphoma. Functional studies with the B-cell lymphoma cell lines revealed teclistamab-mediated T-cell activation, proliferation, and cytotoxicity. This was independent of the level of BCMA expression, but generally lower in mature B-cell malignancies compared with multiple myeloma. Despite low BCMA levels, healthy donor T cells and CLL-derived T cells induced lysis of (autologous) CLL cells upon addition of teclistamab. These data show that BCMA is expressed on various B-cell malignancies and that lymphoma cell lines and primary CLL can be targeted using teclistamab. Further studies to understand the determinants of response to teclistamab are required to identify which other diseases might be suitable for teclistamab targeting. Significance: Besides reported BCMA expression on multiple myeloma, we demonstrate BCMA can be detected and enhanced using γ-secretase inhibition on cell lines and primary material of various B-cell malignancies. Furthermore, using CLL we demonstrate that low BCMA-expressing tumors can be targeted efficiently using the BCMAxCD3 DuoBody teclistamab.


Assuntos
Anticorpos Biespecíficos , Antineoplásicos , Leucemia Linfocítica Crônica de Células B , Linfoma de Células B , Mieloma Múltiplo , Humanos , Secretases da Proteína Precursora do Amiloide , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/uso terapêutico , Antígeno de Maturação de Linfócitos B , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Linfoma de Células B/tratamento farmacológico , Linfócitos T
13.
EMBO J ; 40(20): e106765, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34510494

RESUMO

The current pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and outbreaks of new variants highlight the need for preventive treatments. Here, we identified heparan sulfate proteoglycans as attachment receptors for SARS-CoV-2. Notably, neutralizing antibodies against SARS-CoV-2 isolated from COVID-19 patients interfered with SARS-CoV-2 binding to heparan sulfate proteoglycans, which might be an additional mechanism of antibodies to neutralize infection. SARS-CoV-2 binding to and infection of epithelial cells was blocked by low molecular weight heparins (LMWH). Although dendritic cells (DCs) and mucosal Langerhans cells (LCs) were not infected by SARS-CoV-2, both DC subsets efficiently captured SARS-CoV-2 via heparan sulfate proteoglycans and transmitted the virus to ACE2-positive cells. Notably, human primary nasal cells were infected by SARS-CoV-2, and infection was blocked by pre-treatment with LMWH. These data strongly suggest that heparan sulfate proteoglycans are important attachment receptors facilitating infection and transmission, and support the use of LMWH as prophylaxis against SARS-CoV-2 infection.


Assuntos
COVID-19/transmissão , Proteoglicanas de Heparan Sulfato/metabolismo , Heparina de Baixo Peso Molecular/farmacologia , SARS-CoV-2/patogenicidade , Enzima de Conversão de Angiotensina 2/imunologia , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Anticorpos Neutralizantes/metabolismo , Anticorpos Neutralizantes/farmacologia , Chlorocebus aethiops , Células Dendríticas/metabolismo , Células Dendríticas/virologia , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Interações Hospedeiro-Patógeno , Humanos , Mucosa/citologia , Mucosa/virologia , SARS-CoV-2/metabolismo , Sindecana-1/metabolismo , Sindecana-4/metabolismo , Células Vero , Tratamento Farmacológico da COVID-19
16.
J Hematol Oncol ; 14(1): 11, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436043

RESUMO

BACKGROUND: The survival and proliferation of multiple myeloma (MM) cells in the bone marrow (BM) critically depend on interaction with stromal cells expressing the chemokine CXCL12. CXCL12 regulates the homing to the BM niche by mediating the transendothelial migration and adhesion/retention of the MM cells. The gamma isoform of CXCL12 (CXCL12γ) has been reported to be highly expressed in mouse BM and to show enhanced biological activity compared to the 'common' CXCL12α isoform, mediated by its unique extended C-terminal domain, which binds heparan sulfate proteoglycans (HSPGs) with an extraordinary high affinity. Here, we investigated the expression of CXCL12γ in human BM and studied its functional role in the interaction of MM cells with BM stromal cells (BMSCs). METHODS: We assessed CXCL12γ mRNA and protein expression by human BMSCs using qPCR, flow cytometry, and immunohistochemistry. CRISPR-Cas9 was employed to delete CXCL12γ and the heparan sulfate (HS) co-polymerase EXT1 in BMSCs. To study the functional roles of BMSC-derived CXCL12γ and HSPGs in the interaction of MM cells with BMSCs cells, MM cell lines and primary MM cells were co-cultured with BMSCs. RESULTS: We observed that CXCL12γ is expressed in situ by reticular stromal cells in both normal and MM BM, as well as by primary BMSC isolates and BMSC lines. Importantly, upon secretion, CXCL12γ, unlike the CXCL12α isoform, was retained on the surface of BMSCs. This membrane retention of CXCL12γ is HSPG mediated, since it was completely annulated by CRISPR-Cas9-mediated deletion of the HS co-polymerase EXT1. CXCL12γ expressed by BMSCs and membrane-retained by HSPGs supported robust adhesion of MM cells to the BMSCs. Specific genetic deletion of either CXCL12γ or EXT1 significantly attenuated the ability of BMSCs to support MM cell adhesion and, in addition, impaired their capacity to protect MM cells from bortezomib-induced cell death. CONCLUSIONS: We show that CXCL12γ is expressed by human BMSCs and upon secretion is retained on their cell surface by HSPGs. The membrane-bound CXCL12γ controls adhesion of MM cells to the stromal niche and mediates drug resistance. These findings designate CXCL12γ and associated HSPGs as partners in mediating MM-niche interaction and as potential therapeutic targets in MM.


Assuntos
Adesão Celular , Quimiocina CXCL12/metabolismo , Heparitina Sulfato/metabolismo , Mieloma Múltiplo/metabolismo , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Técnicas de Cocultura , Resistencia a Medicamentos Antineoplásicos , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Mieloma Múltiplo/tratamento farmacológico , Inibidores de Proteassoma/farmacologia
17.
Blood ; 137(13): 1713-1718, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33512430

RESUMO

Plasma cells no longer express a B-cell antigen receptor and are hence deprived of signals crucial for survival throughout B-cell development. Instead, normal plasma cells, as well as their malignant myeloma counterparts, heavily rely on communication with the bone marrow (BM) microenvironment for survival. The plasma cell heparan sulfate proteoglycan (HSPG) syndecan-1 (CD138) and HSPGs in the BM microenvironment act as master regulators of this communication by co-opting specific growth and survival factors from the BM niche. This designates syndecan-1/HSPGs and their synthesis machinery as potential treatment targets in multiple myeloma.


Assuntos
Heparitina Sulfato/metabolismo , Mieloma Múltiplo/patologia , Plasmócitos/patologia , Proteoglicanas/metabolismo , Sindecana-1/metabolismo , Animais , Medula Óssea/metabolismo , Medula Óssea/patologia , Humanos , Mieloma Múltiplo/metabolismo , Plasmócitos/metabolismo , Microambiente Tumoral
18.
Leukemia ; 35(3): 881-886, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32591642

RESUMO

Mantle cell lymphoma (MCL) is an aggressive non-Hodgkin lymphoma subtype arising from naïve B cells. Although novel therapeutics have improved patient prognosis, drug resistance remains a key problem. Here, we show that the SRC-family tyrosine kinase hematopoietic cell kinase (HCK), which is primarily expressed in the hematopoietic lineage but not in mature B cells, is aberrantly expressed in MCL, and that high expression of HCK is associated with inferior prognosis of MCL patients. HCK expression is controlled by the toll-like receptor (TLR) adaptor protein MYD88 and can be enhanced by TLR agonists in MCL cell lines and primary MCL. In line with this, primary MCL with high HCK expression are enriched for a TLR-signaling pathway gene set. Silencing of HCK expression results in cell cycle arrest and apoptosis. Furthermore, HCK controls integrin-mediated adhesion of MCL cells to extracellular matrix and stromal cells. Taken together, our data indicate that TLR/MYD88-controlled aberrant expression of HCK plays a critical role in MCL proliferation and survival as well as in retention of the malignant cells in the growth- and survival-supporting lymphoid organ microenvironment, thereby contributing to lymphomagenesis. These novel insights provide a strong rationale for therapeutic targeting of HCK in MCL.


Assuntos
Biomarcadores Tumorais/metabolismo , Linfoma de Célula do Manto/patologia , Proteínas Proto-Oncogênicas c-hck/metabolismo , Microambiente Tumoral , Biomarcadores Tumorais/genética , Humanos , Linfoma de Célula do Manto/genética , Linfoma de Célula do Manto/metabolismo , Prognóstico , Proteínas Proto-Oncogênicas c-hck/genética , Transdução de Sinais
19.
Biochim Biophys Acta Rev Cancer ; 1874(2): 188437, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32976979

RESUMO

Intestinal epithelial self-renewal is a tightly controlled process, which is critically dependent on WNT signalling. Aberrant activation of the WNT pathway in intestinal stem cells (ISCs) results in constitutive transcription of target genes, which collectively drive malignant transformation in colorectal cancer (CRC). However, the contribution of individual genes to intestinal homeostasis and tumorigenesis often is incompletely defined. Here, we discuss converging evidence indicating that the receptor tyrosine kinase (RTK) MET and its ligand hepatocyte growth factor (HGF) play a major role in the intestinal damage response, as well as in intestinal tumorigenesis, by controlling the proliferation, survival, motility, and stemness of normal and neoplastic intestinal epithelial cells. These activities of MET are promoted by specific CD44 isoforms expressed by ISCs. The accrued data indicate that MET and the EGFR have overlapping roles in the biology of intestinal epithelium and that metastatic CRCs can exploit this redundancy to escape from EGFR-targeted treatments, co-opting HGF/MET/CD44v signalling. Hence, targeting both pathways may be required for effective treatment of (a subset of) CRCs. The RTK identity of MET, the distinctive 'plasminogen-like' structure and activation mode of its ligand HGF, and the specific collaboration of MET with CD44, provide several unique targeting options, which merit further exploration.


Assuntos
Neoplasias Colorretais/metabolismo , Resistencia a Medicamentos Antineoplásicos , Fator de Crescimento de Hepatócito/metabolismo , Receptores de Hialuronatos/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Mucosa Intestinal/metabolismo , Invasividade Neoplásica , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos
20.
Blood Adv ; 4(17): 4151-4164, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32898245

RESUMO

The phosphatidylinositide-3 kinases and the downstream mediator AKT drive survival and proliferation of multiple myeloma (MM) cells. AKT signaling is active in MM and has pleiotropic effects; however, the key molecular aspects of AKT dependency in MM are not fully clear. Among the various downstream AKT targets are the Forkhead box O (FOXO) transcription factors (TFs) and glycogen synthase kinase 3 (GSK3), which are negatively regulated by AKT signaling. Here we show that abrogation of AKT signaling in MM cells provokes cell death and cell cycle arrest, which crucially depends on both FOXO TFs and GSK3. Based on gene expression profiling, we defined a FOXO-repressed gene set that has prognostic significance in a large cohort of patients with MM, indicating that AKT-mediated gene activation is associated with inferior overall survival. We further show that AKT signaling stabilizes the antiapoptotic myeloid cell leukemia 1 (MCL1) protein by inhibiting FOXO- and GSK3-mediated MCL1 turnover. In concordance, abrogation of AKT signaling greatly sensitized MM cells for an MCL1-targeting BH3-mimetic, which is currently in clinical development. Taken together, our results indicate that AKT activity is required to restrain the tumor-suppressive functions of FOXO and GSK3, thereby stabilizing the antiapoptotic protein MCL1 in MM. These novel insights into the role of AKT in MM pathogenesis and MCL1 regulation provide opportunities to improve targeted therapy for patients with MM.


Assuntos
Fatores de Transcrição Forkhead , Mieloma Múltiplo , Fatores de Transcrição Forkhead/metabolismo , Quinase 3 da Glicogênio Sintase , Humanos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA