Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
N Biotechnol ; 83: 74-81, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39032630

RESUMO

Targeted cancer therapy is a promising alternative to the currently established cancer treatments, aiming to selectively kill cancer cells while sparing healthy tissues. Hereby, molecular targeting agents, such as monoclonal antibodies, are used to bind to cancer cell surface markers specifically. Although these agents have shown great clinical success, limitations still remain such as low tumor penetration and off-target effects. To overcome this limitation, novel fusion proteins comprised of the two proteins ADAPT6 and Horseradish Peroxidase (HRP) were engineered. Cancer cell targeting is hereby enabled by the small scaffold protein ADAPT6, engineered to specifically bind to human epidermal growth factor receptor 2 (HER2), a cell surface marker overexpressed in various cancer types, while the enzyme HRP oxidizes the nontoxic prodrug indole-3-acetic acid (IAA) which leads to the formation of free radicals and thereby to cytotoxic effects on cancer cells. The high affinity to HER2, as well as the enzymatic activity of HRP, were still present for the ADAPT6-HRP fusion proteins. Further, in vitro cytotoxicity assay using HER2-positive SKOV-3 cells revealed a clear advantage of the fusion proteins over free HRP by association of the fusion proteins directly to the cancer cells and therefore sustained cell killing. This novel strategy of combining ADAPT6 and HRP represents a promising approach and a viable alternative to antibody conjugation for targeted cancer therapy.

2.
Cytotherapy ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38944794

RESUMO

Natural killer (NK) cells make only a small fraction of immune cells in the human body, however, play a pivotal role in the fight against cancer by the immune system. They are capable of eliminating abnormal cells via several direct or indirect cytotoxicity pathways in a self-regulating manner, which makes them a favorable choice as a cellular therapy against cancer. Additionally, allogeneic NK cells, unlike other lymphocytes, do not or only minimally cause graft-versus-host diseases opening the door for an off-the-shelf therapy. However, to date, the production of NK cells faces several difficulties, especially because the critical process parameters (CPPs) influencing the critical quality attributes (CQAs) are difficult to identify or correlate. There are numerous different cultivation platforms available, all with own characteristics, benefits and disadvantages that add further difficulty to define CPPs and relate them to CQAs. Our goal in this contribution was to summarize the current knowledge about NK cell expansion CPPs and CQAs, therefore we analyzed the available literature of both dynamic and static culture format experiments in a systematic manner. We present a list of the identified CQAs and CPPs and discuss the role of each CPP in the regulation of the CQAs. Furthermore, we could identify potential relationships between certain CPPs and CQAs. The findings based on this systematic literature research can be the foundation for meaningful experiments leading to better process understanding and eventually control.

3.
Eur J Pharm Biopharm ; 197: 114213, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38346479

RESUMO

Neutral and positively charged archaeal ether lipids (AEL) have been studied for their utilization as novel delivery systems for pDNA, showing efficient immune response with a strong memory effect while lacking noticeable toxicity. Recent technological advances placed mRNA lipid nanoparticles (LNPs) at the forefront of next-generation delivery systems; however, no study has examined AELs in mRNA delivery yet. In this study, we investigated either a crude lipid extract or the purified tetraether lipid caldarchaeol from Sulfolobus acidocaldarius as potential novel excipients for mRNA LNPs. Depending on their molar share in the respective LNP, particle uptake, and mRNA expression levels could be increased by up to 10-fold in in vitro transfection experiments using both primary cell sources (HSMM) and established cell lines (Caco-2, C2C12) compared to a well-known reference formulation. This increased efficiency might be linked to a substantial effect on endosomal escape, indicating fusogenic and lyotropic features of AELs. This study shows the high value of archaeal ether lipids for mRNA delivery and provides a solid foundation for future in vivo experiments and further research.


Assuntos
Lipídeos , Nanopartículas , Humanos , Éter , Archaea , RNA Mensageiro/genética , Células CACO-2 , Lipossomos , Transfecção , Éteres , Etil-Éteres , RNA Interferente Pequeno
4.
Monatsh Chem ; 152(11): 1389-1397, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34759433

RESUMO

Targeted cancer treatment is a promising, less invasive alternative to chemotherapy as it is precisely directed against tumor cells whilst leaving healthy tissue unaffected. The plant-derived enzyme horseradish peroxidase (HRP) can be used for enzyme prodrug cancer therapy with indole-3-acetic acid or the analgesic paracetamol (acetaminophen). Oxidation of paracetamol by HRP in the presence of hydrogen peroxide leads to N-acetyl-p-benzoquinone imine and polymer formation via a radical reaction mechanism. N-acetyl-p-benzoquinone imine binds to DNA and proteins, resulting in severe cytotoxicity. However, plant HRP is not suitable for this application since the foreign glycosylation pattern is recognized by the human immune system, causing rapid clearance from the body. Furthermore, plant-derived HRP is a mixture of isoenzymes with a heterogeneous composition. Here, we investigated the reaction of paracetamol with defined recombinant HRP variants produced in E. coli, as well as plant HRP, and found that they are equally effective in paracetamol oxidation at a concentration ≥ 400 µM. At low paracetamol concentrations, however, recombinant HRP seems to be more efficient in paracetamol oxidation. Yet upon treatment of HCT-116 colon carcinoma and FaDu squamous carcinoma cells with HRP-paracetamol no cytotoxic effect was observed, neither in the presence nor absence of hydrogen peroxide. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00706-021-02848-x.

5.
Plants (Basel) ; 10(9)2021 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-34579488

RESUMO

Malus × domestica (apple) accumulates particularly high amounts of dihydrochalcones in various tissues, with phloridzin (phloretin 2'-O-glucoside) being prevalent, although small amounts of 3-hydroxyphloretin and 3-hydroxyphloridzin are also constitutively present. The latter was shown to correlate with increased disease resistance of transgenic M. × domestica plants. Two types of enzymes could be involved in 3-hydroxylation of dihydrochalcones: polyphenol oxidases or the flavonoid 3'-hydroxylase (F3'H), which catalyzes B-ring hydroxylation of flavonoids. We isolated two F3'H cDNA clones from apple leaves and tested recombinant Malus F3'Hs for their substrate specificity. From the two isolated cDNA clones, only F3'HII encoded a functionally active enzyme. In the F3'HI sequence, we identified two putatively relevant amino acids that were exchanged in comparison to that of a previously published F3'HI. Site directed mutagenesis, which exchanged an isoleucine into methionine in position 211 restored the functional activity, which is probably because it is located in an area involved in interaction with the substrate. In contrast to high activity with various flavonoid substrates, the recombinant enzymes did not accept phloretin under assay conditions, making an involvement in the dihydrochalcone biosynthesis unlikely.

6.
Biomed Pharmacother ; 142: 112037, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34392084

RESUMO

Fighting cancer still relies on chemo- and radiation therapy, which is a trade-off between effective clearance of malignant cells and severe side effects on healthy tissue. Targeted cancer treatment on the other hand is a promising and refined strategy with less systemic interference. The enzyme horseradish peroxidase (HRP) exhibits cytotoxic effects on cancer cells in combination with indole-3-acetic acid (IAA). However, the plant-derived enzyme is out of bounds for medical purposes due to its foreign glycosylation pattern and resulting rapid clearance and immunogenicity. In this study, we generated recombinant, unglycosylated HRP variants in Escherichia coli using random mutagenesis and investigated their biochemical properties and suitability for cancer treatment. The cytotoxicity of the HRP-IAA enzyme prodrug system was assessed in vitro with HCT-116 human colon, FaDu human nasopharyngeal squamous cell carcinoma and murine colon adenocarcinoma cells (MC38). Extensive cytotoxicity was shown in all three cancer cell lines: the cell viability of HCT-116 and MC38 cells treated with HRP-IAA was below 1% after 24 h incubation and the surviving fraction of FaDu cells was ≤ 10% after 72 h. However, no cytotoxic effect was observed upon in vivo intratumoral application of HRP-IAA on a MC38 tumor model in C57BL/6J mice. However, we expect that targeting of HRP to the tumor by conjugation to specific antibodies or antibody fragments will reduce HRP clearance and thereby enhance therapy efficacy.


Assuntos
Antineoplásicos/farmacologia , Peroxidase do Rábano Silvestre/farmacologia , Ácidos Indolacéticos/química , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/patologia , Animais , Antineoplásicos/química , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Feminino , Células HCT116 , Peroxidase do Rábano Silvestre/química , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Nasofaríngeas/tratamento farmacológico , Neoplasias Nasofaríngeas/patologia , Pró-Fármacos
7.
Int J Mol Sci ; 21(11)2020 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-32486295

RESUMO

The microbial cell membrane is affected by physicochemical parameters, such as temperature and pH, but also by the specific growth rate of the host organism. Homeoviscous adaption describes the process of maintaining membrane fluidity and permeability throughout these environmental changes. Archaea, and thereby, Sulfolobus spp. exhibit a unique lipid composition of ether lipids, which are altered in regard to the ratio of diether to tetraether lipids, number of cyclopentane rings and type of head groups, as a coping mechanism against environmental changes. The main biotechnological application of the membrane lipids of Sulfolobus spp. are so called archaeosomes. Archaeosomes are liposomes which are fully or partly generated from archaeal lipids and harbor the potential to be used as drug delivery systems for vaccines, proteins, peptides and nucleic acids. This review summarizes the influence of environmental parameters on the cell membrane of Sulfolobus spp. and the biotechnological applications of their membrane lipids.


Assuntos
Biotecnologia/métodos , Membrana Celular/química , Sulfolobus/química , Biotecnologia/tendências , Ciclopentanos/química , Sistemas de Liberação de Medicamentos , Concentração de Íons de Hidrogênio , Lipossomos/química , Lipídeos de Membrana/química , Membranas Artificiais , Methanobacterium/química , Natronococcus/química , Peptídeos/química , Temperatura , Viscosidade
8.
AMB Express ; 8(1): 90, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29858922

RESUMO

Complex raw materials are widely used as supplements in biopharmaceutical production processes due to their positive effect on biomass growth and productivity at low cost. However, their use negatively impacts process reproducibility due to high lot-to-lot variability which contradicts current regulatory guidelines. In this study we investigated crude soy bean oil (SBO) which is a common complex raw material for filamentous fungi. We demonstrated that lecithin, which we define as phosphatidylcholines, is in fact the key material attribute in crude SBO positively affecting fungal growth and consequently productivity. The methodological toolbox we present here allows the straightforward isolation of lecithin from crude SBO, its semi-quantification by HPLC and the consequent supplementation thereof in defined amounts. Thus, over-dosage and potential resulting negative impacts on fungal growth and productivity can be omitted.

9.
Sci Rep ; 8(1): 6245, 2018 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-29674683

RESUMO

Cancer cells rewire metabolism to sustain high proliferation rates. Beside glycolysis and glutaminolysis, amino acids substitute as energy source, feed fatty acid biosynthesis and represent part of the secretome of transformed cells, including melanoma. We have therefore investigated acetate, pyruvate and the amino acid composition of the secretome of human melanoma cells representing the early slow (WM35, WM278, WM793b and VM21) and metastatic fast (A375, 518a2, 6F and WM8) growth phase in order to identify possible signalling components within these profiles. Proliferation assays and a principle component analysis revealed a stringent difference between the fast and slow growing melanoma cells. Moreover, upon inhibition of the mevalonate pathway, glutamic acid and alanine were identified as the central difference in the conditional media. A supplementation of the media with glutamic acid and the combination with alanine significantly accelerated the proliferation, migration and invasion of early stage melanoma cells, but not metastatic cells. Finally, the inhibition of the mevalonate pathway abolished the growth advantage of the melanoma cells in a time dependent manner. Taken together, these data corroborate a stage specific response in growth and aggressiveness to extracellular glutamic acid and alanine, indicative for microenvironmental signalling of individual amino acids.


Assuntos
Aminoácidos/análise , Melanoma/patologia , Alanina/farmacologia , Aminoácidos/metabolismo , Aminoácidos/farmacologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Progressão da Doença , Humanos , Melanoma/metabolismo , Metástase Neoplásica , Oligopeptídeos/farmacologia , Transdução de Sinais/efeitos dos fármacos
10.
Protein Pept Lett ; 24(8): 686-695, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28741467

RESUMO

Over the last years, a novel class of anti-cancer drugs named antibody-drug conjugates (ADCs) has been developed. Due to their limited off-target toxicity but highly potent cytotoxicity at tumor sites, ADCs have proven to be a good alternative to ordinary cancer treatment, such as chemotherapy or combination therapy. Numerous enhancements in antibody-drug engineering led to highly potent tumor targeting drugs with a wide therapeutic window. Two ADCs (Brentuximab vedotin and Trastuzumab emtansine) are already on the market and many others are in clinical trials. However, unstable linkers, low drug potency and unwanted bystander-effects are only some of the drawbacks of ADCs. Enzymes used in combination with prodrugs happen to be a promising alternative. The glyco-enzyme horseradish peroxidase (HRP) has proven to activate the hormone indole-3-acetic acid (IAA) to a highly potent cytotoxic drug. This combination of IAA and HRP has been investigated for the use in strategies such as gene-directed enzyme prodrug therapy (GDEPT) and antibody-directed enzyme prodrug therapy (ADEPT). This article reviews the current state of research in ADC engineering and describes the potential major enhancements through use of glycoenzymes in combination with a prodrug.


Assuntos
Anticorpos Monoclonais/biossíntese , Antineoplásicos Imunológicos/uso terapêutico , Imunoconjugados/uso terapêutico , Maitansina/análogos & derivados , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Trastuzumab/uso terapêutico , Ado-Trastuzumab Emtansina , Anticorpos Monoclonais/uso terapêutico , Antineoplásicos Imunológicos/metabolismo , Brentuximab Vedotin , Ensaios Clínicos como Assunto , Desenho de Fármacos , Glicoconjugados/síntese química , Glicoconjugados/uso terapêutico , Peroxidase do Rábano Silvestre/metabolismo , Peroxidase do Rábano Silvestre/uso terapêutico , Humanos , Imunoconjugados/química , Ácidos Indolacéticos/metabolismo , Maitansina/biossíntese , Maitansina/uso terapêutico , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Pró-Fármacos/síntese química , Pró-Fármacos/uso terapêutico , Trastuzumab/biossíntese , Moduladores de Tubulina/síntese química , Moduladores de Tubulina/uso terapêutico
11.
Cancer Med ; 5(6): 1194-203, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26990592

RESUMO

Cancer is a major cause of death. Common chemo- and radiation-therapies damage healthy tissue and cause painful side effects. The enzyme horseradish peroxidase (HRP) has been shown to activate the plant hormone indole-3-acetic acid (IAA) to a powerful anticancer agent in in vitro studies, but gene directed enzyme prodrug therapy (GDEPT) studies showed ambivalent results. Thus, HRP/IAA in antibody directed enzyme prodrug therapy (ADEPT) was investigated as an alternative. However, this approach has not been intensively studied, since the enzyme preparation from plant describes an undefined mixture of isoenzymes with a heterogenic glycosylation pattern incompatible with the human system. Here, we describe the recombinant production of the two HRP isoenzymes C1A and A2A in a Pichia pastoris benchmark strain and a glyco-engineered strain with a knockout of the α-1,6-mannosyltransferase (OCH1) responsible for hypermannosylation. We biochemically characterized the enzyme variants, tested them with IAA and applied them on cancer cells. In the absence of H2 O2 , HRP C1A turned out to be highly active with IAA, independent of its surface glycosylation. Subsequent in vitro cytotoxicity studies with human T24 bladder carcinoma and MDA-MB-231 breast carcinoma cells underlined the applicability of recombinant HRP C1A with reduced surface glycoslyation for targeted cancer treatment. Summarizing, this is the first study describing the successful use of recombinantly produced HRP for targeted cancer treatment. Our findings might pave the way for an increased use of the powerful isoenzyme HRP C1A in cancer research in the future.


Assuntos
Antineoplásicos/farmacologia , Peroxidase do Rábano Silvestre/farmacologia , Pró-Fármacos , Proteínas Recombinantes/farmacologia , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Peroxidase do Rábano Silvestre/química , Peroxidase do Rábano Silvestre/isolamento & purificação , Humanos , Ácidos Indolacéticos/química , Concentração Inibidora 50 , Isoenzimas , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação
12.
Sci Rep ; 3: 3279, 2013 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-24252857

RESUMO

The yeast Pichia pastoris is a common host for the recombinant production of biopharmaceuticals, capable of performing posttranslational modifications like glycosylation of secreted proteins. However, the activity of the OCH1 encoded α-1,6-mannosyltransferase triggers hypermannosylation of secreted proteins at great heterogeneity, considerably hampering downstream processing and reproducibility. Horseradish peroxidases are versatile enzymes with applications in diagnostics, bioremediation and cancer treatment. Despite the importance of these enzymes, they are still isolated from plant at low yields with different biochemical properties. Here we show the production of homogeneous glycoprotein species of recombinant horseradish peroxidase by using a P. pastoris platform strain in which OCH1 was deleted. This och1 knockout strain showed a growth impaired phenotype and considerable rearrangements of cell wall components, but nevertheless secreted more homogeneously glycosylated protein carrying mainly Man8 instead of Man10 N-glycans as a dominant core glycan structure at a volumetric productivity of 70% of the wildtype strain.


Assuntos
Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Técnicas de Inativação de Genes , Glicoproteínas/metabolismo , Manosiltransferases/genética , Pichia/genética , Pichia/metabolismo , Técnicas de Cultura Celular por Lotes , Reatores Biológicos , Divisão Celular/genética , Cromatografia Líquida , Ativação Enzimática , Ordem dos Genes , Marcação de Genes , Glicoproteínas/química , Lectinas de Ligação a Manose/metabolismo , Manosiltransferases/química , Manosiltransferases/isolamento & purificação , Manosiltransferases/metabolismo , Espectrometria de Massas , Fenótipo , Pichia/crescimento & desenvolvimento , Polissacarídeos/química , Polissacarídeos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Estresse Fisiológico
13.
FEBS Open Bio ; 3: 496-504, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24282677

RESUMO

The flavin-dependent homotetrameric enzyme pyranose 2-oxidase (P2O) is found mostly, but not exclusively, in lignocellulose-degrading fungi where it catalyzes the oxidation of ß-d-glucose to the corresponding 2-keto sugar concomitantly with hydrogen peroxide formation during lignin solubilization. Here, we present crystal structures of P2O from the efficient lignocellulolytic basidiomycete Phanerochaete chrysosporium. Structures were determined of wild-type PcP2O from the natural fungal source, and two variants of recombinant full-length PcP2O, both in complex with the slow substrate 3-deoxy-3-fluoro-ß-d-glucose. The active sites in PcP2O and P2O from Trametes multicolor (TmP2O) are highly conserved with identical substrate binding. Our structural analysis suggests that the 17 °C higher melting temperature of PcP2O compared to TmP2O is due to an increased number of intersubunit salt bridges. The structure of recombinant PcP2O expressed with its natural N-terminal sequence, including a proposed propeptide segment, reveals that the first five residues of the propeptide intercalate at the interface between A and B subunits to form stabilizing, mainly hydrophobic, interactions. In the structure of mature PcP2O purified from the natural source, the propeptide segment in subunit A has been replaced by a nearby loop in the B subunit. We propose that the propeptide in subunit A stabilizes the A/B interface of essential dimers in the homotetramer and that, upon maturation, it is replaced by the loop in the B subunit to form the mature subunit interface. This would imply that the propeptide segment of PcP2O acts as an intramolecular chaperone for oligomerization at the A/B interface of the essential dimer.

14.
Pharm Bioprocess ; 1(3): 283-295, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24683473

RESUMO

The oxidoreductase horseradish peroxidase (HRP) is used in numerous industrial and medical applications. In this review, we briefly describe this well-studied enzyme and focus on its promising use in targeted cancer treatment. In combination with a plant hormone, HRP can be used in specific enzyme-prodrug therapies. Despite this outstanding application, HRP has not found its way as a biopharmaceutical into targeted cancer therapy yet. The reasons therefore lie in the present low-yield production and cumbersome purification of this enzyme from its natural source. However, surface glycosylation renders the recombinant production of HRP difficult. Here, we compare different production hosts for HRP and summarize currently used production and purification strategies for this enzyme. We further present our own strategy of glycoengineering this powerful enzyme to allow recombinant high-yield production in Pichia pastoris and subsequent simple downstream processing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA