Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
PLoS One ; 19(5): e0303449, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38768097

RESUMO

Candida albicans (C. albicans) can behave as a commensal yeast colonizing the vaginal mucosa, and in this condition is tolerated by the epithelium. When the epithelial tolerance breaks down, due to C. albicans overgrowth and hyphae formation, the generated inflammatory response and cell damage lead to vulvovaginal candidiasis (VVC) symptoms. Here, we focused on the induction of mitochondrial reactive oxygen species (mtROS) in vaginal epithelial cells after C. albicans infection and the involvement of fungal burden, morphogenesis and candidalysin (CL) production in such induction. Bioluminescent (BLI) C. albicans, C. albicans PCA-2 and C. albicans 529L strains were employed in an in vitro infection model including reconstituted vaginal epithelium cells (RVE), produced starting from A-431 cell line. The production of mtROS was kinetically measured by using MitoSOX™ Red probe. The potency of C. albicans to induced cell damage to RVE and C. albicans proliferation have also been evaluated. C. albicans induces a rapid mtROS release from vaginal epithelial cells, in parallel with an increase of the fungal load and hyphal formation. Under the same experimental conditions, the 529L C. albicans strain, known to be defective in CL production, induced a minor mtROS release showing the key role of CL in causing epithelial mithocondrial activation. C. albicans PCA-2, unable to form hyphae, induced comparable but slower mtROS production as compared to BLI C. albicans yeasts. By reducing mtROS through a ROS scavenger, an increased fungal burden was observed during RVE infection but not in fungal cultures grown on abiotic surface. Collectively, we conclude that CL, more than fungal load and hyphae formation, seems to play a key role in the rapid activation of mtROS by epithelial cells and in the induction of cell-damage and that mtROS are key elements in the vaginal epithelial cells response to C. albicans.


Assuntos
Candida albicans , Candidíase Vulvovaginal , Células Epiteliais , Proteínas Fúngicas , Mitocôndrias , Espécies Reativas de Oxigênio , Vagina , Candida albicans/metabolismo , Candida albicans/fisiologia , Feminino , Humanos , Mitocôndrias/metabolismo , Vagina/microbiologia , Espécies Reativas de Oxigênio/metabolismo , Células Epiteliais/microbiologia , Células Epiteliais/metabolismo , Proteínas Fúngicas/metabolismo , Candidíase Vulvovaginal/microbiologia , Hifas/metabolismo , Hifas/crescimento & desenvolvimento , Linhagem Celular
2.
Microbiol Spectr ; 10(3): e0269621, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35499353

RESUMO

Vulvovaginal candidiasis (VVC) is a common clinical condition with symptoms and signs of vaginal inflammation in the presence of Candida species. At least one episode of VVC is experienced in up to 75% of women in the reproductive age group during their lifetime, and 5% to 8% of such women suffer from the chronic form. Most cases of VVC are still caused by C. albicans. However, the incidence of VVC cases by non-albicans Candida (NAC) species, such as C. parapsilosis, is continuously increasing. Despite the prevalence of VVC from NAC, little is known about these species and almost nothing about the mechanisms that trigger the VVC. Lactobacillus spp. are the most widely before represented microorganisms in the vaginal microbiota of healthy women. Here, cell-free supernatants (CFS) obtained from L. acidophilus, L. plantarum, L. rhamnosus, and L. reuteri were assessed for their effect on C. parapsilosis virulence traits. Moreover, we assessed if such an effect persisted even after the removal of the CFS (CFS preincubation effect). Moreover, a transwell coculture system was employed by which the relevant antifungal effect was shown to be attributable to the compounds released by lactobacilli. Our results suggest that lactobacilli can work (i) by reducing C. parapsilosis virulence traits, as indicated by the reduced fungal proliferation, viability, and metabolic activity, and (ii) by improving epithelial resistance to the fungus. Overall, these data suggest that, in the context of the vaginal microbiota, the lactobacilli may play a role in preventing the onset of mucosal C. parapsilosis infection. IMPORTANCE The incidence of VVC by non-albicans Candida (NAC) species, such as C. parapsilosis, is increasing. Treatment failure is common in NAC-VVC because some species are resistant or poorly susceptible to the antifungal agents normally employed. Research on C. parapsilosis's pathogenic mechanisms and alternative treatments are still lacking. C. albicans triggers the VVC by producing hyphae, which favor the loss of epithelial tolerance. Differently, C. parapsilosis only produces pseudohyphae. Hence, different virulence factors may trigger the VVC. Likewise, the therapeutic options could also involve different fungal targets. Substantial in vitro and in vivo studies on the pathogenicity mechanisms of C. parapsilosis are lacking. The data presented here ascribe a novel beneficial role to different Lactobacillus spp., whose CFS provides a postbiotic-like activity against C. parapsilosis. Further studies are needed to unravel the mechanisms involved in the bioactivities of such compounds, to better understand the role of single postbiotics in the CFS.


Assuntos
Candidíase Vulvovaginal , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Candida , Candida albicans , Candida parapsilosis , Candidíase Vulvovaginal/tratamento farmacológico , Candidíase Vulvovaginal/microbiologia , Candidíase Vulvovaginal/patologia , Técnicas de Cocultura , Células Epiteliais , Feminino , Humanos , Lactobacillus , Lactobacillus acidophilus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA