Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
J Cancer Res Clin Oncol ; 149(10): 7997-8006, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36920563

RESUMO

BACKGROUND: Artificial intelligence (AI) is influencing our society on many levels and has broad implications for the future practice of hematology and oncology. However, for many medical professionals and researchers, it often remains unclear what AI can and cannot do, and what are promising areas for a sensible application of AI in hematology and oncology. Finally, the limits and perils of using AI in oncology are not obvious to many healthcare professionals. METHODS: In this article, we provide an expert-based consensus statement by the joint Working Group on "Artificial Intelligence in Hematology and Oncology" by the German Society of Hematology and Oncology (DGHO), the German Association for Medical Informatics, Biometry and Epidemiology (GMDS), and the Special Interest Group Digital Health of the German Informatics Society (GI). We provide a conceptual framework for AI in hematology and oncology. RESULTS: First, we propose a technological definition, which we deliberately set in a narrow frame to mainly include the technical developments of the last ten years. Second, we present a taxonomy of clinically relevant AI systems, structured according to the type of clinical data they are used to analyze. Third, we show an overview of potential applications, including clinical, research, and educational environments with a focus on hematology and oncology. CONCLUSION: Thus, this article provides a point of reference for hematologists and oncologists, and at the same time sets forth a framework for the further development and clinical deployment of AI in hematology and oncology in the future.


Assuntos
Inteligência Artificial , Hematologia , Humanos , Oncologia , Previsões
2.
J Math Biol ; 86(1): 7, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36460900

RESUMO

Cancer progression can be described by continuous-time Markov chains whose state space grows exponentially in the number of somatic mutations. The age of a tumor at diagnosis is typically unknown. Therefore, the quantity of interest is the time-marginal distribution over all possible genotypes of tumors, defined as the transient distribution integrated over an exponentially distributed observation time. It can be obtained as the solution of a large linear system. However, the sheer size of this system renders classical solvers infeasible. We consider Markov chains whose transition rates are separable functions, allowing for an efficient low-rank tensor representation of the linear system's operator. Thus we can reduce the computational complexity from exponential to linear. We derive a convergent iterative method using low-rank formats whose result satisfies the normalization constraint of a distribution. We also perform numerical experiments illustrating that the marginal distribution is well approximated with low rank.


Assuntos
Cadeias de Markov , Genótipo
3.
J Immunother Cancer ; 10(5)2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35606086

RESUMO

BACKGROUND: Cancer immunotherapeutic strategies showed unprecedented results in the clinic. However, many patients do not respond to immuno-oncological treatments due to the occurrence of a plethora of immunological obstacles, including tumor intrinsic mechanisms of resistance to cytotoxic T-cell (TC) attack. Thus, a deeper understanding of these mechanisms is needed to develop successful immunotherapies. METHODS: To identify novel genes that protect tumor cells from effective TC-mediated cytotoxicity, we performed a genetic screening in pancreatic cancer cells challenged with tumor-infiltrating lymphocytes and antigen-specific TCs. RESULTS: The screening revealed 108 potential genes that protected tumor cells from TC attack. Among them, salt-inducible kinase 3 (SIK3) was one of the strongest hits identified in the screening. Both genetic and pharmacological inhibitions of SIK3 in tumor cells dramatically increased TC-mediated cytotoxicity in several in vitro coculture models, using different sources of tumor and TCs. Consistently, adoptive TC transfer of TILs led to tumor growth inhibition of SIK3-depleted cancer cells in vivo. Mechanistic analysis revealed that SIK3 rendered tumor cells susceptible to tumor necrosis factor (TNF) secreted by tumor-activated TCs. SIK3 promoted nuclear factor kappa B (NF-κB) nuclear translocation and inhibited caspase-8 and caspase-9 after TNF stimulation. Chromatin accessibility and transcriptome analyses showed that SIK3 knockdown profoundly impaired the expression of prosurvival genes under the TNF-NF-κB axis. TNF stimulation led to SIK3-dependent phosphorylation of the NF-κB upstream regulators inhibitory-κB kinase and NF-kappa-B inhibitor alpha on the one side, and to inhibition of histone deacetylase 4 on the other side, thus sustaining NF-κB activation and nuclear stabilization. A SIK3-dependent gene signature of TNF-mediated NF-κB activation was found in a majority of pancreatic cancers where it correlated with increased cytotoxic TC activity and poor prognosis. CONCLUSION: Our data reveal an abundant molecular mechanism that protects tumor cells from cytotoxic TC attack and demonstrate that pharmacological inhibition of this pathway is feasible.


Assuntos
NF-kappa B , Fator de Necrose Tumoral alfa , Apoptose , Humanos , NF-kappa B/metabolismo , Fosforilação , Linfócitos T/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
4.
Oncoimmunology ; 11(1): 2066609, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35481285

RESUMO

In patients with melanoma brain metastases (MBM), a combination of radiotherapy (RT) with immune checkpoint inhibitors (ICI) is routinely used. However, the best sequence of radio-immunotherapy (RIT) remains unclear. In an exploratory phase 2 trial, MBM patients received RT (stereotactic or whole-brain radiotherapy depending on the number of MBM) combined with ipilimumab (ipi) ± nivolumab (nivo) in different sequencing (Rad-ICI or ICI-Rad). Comparators arms included patients treated with ipi-free systemic treatment or without RT (in MBM-free patients). The primary endpoints were radiological and immunological responses in the peripheral blood. Secondary endpoints were progression-free survival (PFS) and overall survival (OS). Of 106 screened, 92 patients were included in the study. Multivariate analysis revealed an advantage for patients starting with RT (Rad-ICI) for overall response rate (RR: p = .007; HR: 7.88 (95%CI: 1.76-35.27)) and disease control rate (DCR: p = .036; HR: 6.26 (95%CI: 1.13-34.71)) with a trend for a better PFS (p = .162; HR: 1.64 (95%CI: 0.8-3.3)). After RT plus two cycles of ipi-based ICI in both RIT sequences, increased frequencies of activated CD4, CD8 T cells and an increase in melanoma-specific T cell responses were observed in the peripheral blood. Lasso regression analysis revealed a significant clinical benefit for patients treated with Rad-ICI sequence and immunological features, including high frequencies of memory T cells and activated CD8 T cells in the blood. This study supports increasing evidence that sequencing RT followed by ICI treatment may have better effects on the immunological responses and clinical outcomes in MBM patients.


Assuntos
Neoplasias Encefálicas , Melanoma , Neoplasias Encefálicas/radioterapia , Humanos , Ipilimumab/uso terapêutico , Melanoma/tratamento farmacológico , Melanoma/radioterapia , Intervalo Livre de Progressão , Radioimunoterapia
5.
Br J Haematol ; 196(3): 681-689, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34617271

RESUMO

Sporadic Burkitt lymphoma (BL) is the most frequent tumour of children and adolescents but a rare subtype of lymphomas in adults. To date most molecular data have been obtained from lymphomas arising in the young. Recently, Epstein-Barr virus (EBV) positive and negative BL in young patients was shown to differ in molecular features. In the present study, we present a large age-overarching cohort of sporadic BL (n = 162) analysed by immunohistochemistry, translocations of MYC proto-oncogene, basic helix-loop-helix transcription factor (MYC), B-cell leukaemia/lymphoma 2 (BCL2) and B-cell leukaemia/lymphoma 6 (BCL6) and by targeted sequencing. We illustrate an age-associated inter-tumoral molecular heterogeneity in this disease. Mutations affecting inhibitor of DNA binding 3, HLH protein (ID3), transcription factor 3 (TCF3) and cyclin D3 (CCND3), which are highly recurrent in paediatric BL, and expression of sex determining region Y-box transcription factor 11 (SOX11) declined with patient age at diagnosis (P = 0·0204 and P = 0·0197 respectively). In contrast, EBV was more frequently detected in adult patients (P = 0·0262). Irrespective of age, EBV-positive sporadic BL showed significantly less frequent mutations in ID3/TCF3/CCND3 (P = 0·0088) but more often mutations of G protein subunit alpha 13 (GNA13; P = 0·0368) and forkhead box O1 (FOXO1; P = 0·0044) compared to EBV-negative tumours. Our findings suggest that among sporadic BL an EBV-positive subgroup of lymphomas increases with patient age that shows distinct pathogenic features reminiscent of EBV-positive endemic BL.


Assuntos
Linfoma de Burkitt/epidemiologia , Linfoma de Burkitt/etiologia , Suscetibilidade a Doenças , Infecções por Vírus Epstein-Barr/complicações , Herpesvirus Humano 4/fisiologia , Mutação , Adolescente , Adulto , Fatores Etários , Idade de Início , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/genética , Linfoma de Burkitt/diagnóstico , Transformação Celular Viral , Criança , Pré-Escolar , Análise Mutacional de DNA , Infecções por Vírus Epstein-Barr/virologia , Feminino , Expressão Gênica , Perfilação da Expressão Gênica , Predisposição Genética para Doença , Humanos , Imuno-Histoquímica , Hibridização in Situ Fluorescente , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Adulto Jovem
6.
J Clin Med ; 10(11)2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34073664

RESUMO

Malignant melanoma is one of the most dangerous tumor types due to its high metastasis rates and a steadily increasing incidence. During tumorigenesis, the molecular processes of embryonic development, exemplified by epithelial-mesenchymal transition (EMT), are often reactivated. For melanoma development, the exact molecular differences between melanoblasts, melanocytes, and melanoma cells are not completely understood. In this study, we aimed to identify microRNAs (miRNAs) that promote melanoma tumorigenesis and progression, based on an in vitro model of normal human epidermal melanocyte (NHEM) de-differentiation into melanoblast-like cells (MBrCs). Using miRNA-sequencing and differential expression analysis, we demonstrated in this study that a majority of miRNAs have an almost equal expression level in NHEMs and MBrCs but are significantly differentially regulated in primary tumor- and metastasis-derived melanoma cell lines. Further, a target gene analysis of strongly regulated but functionally unknown miRNAs yielded the implication of those miRNAs in many important cellular pathways driving malignancy. We hypothesize that many of the miRNAs discovered in our study are key drivers of melanoma development as they account for the tumorigenic potential that differentiates melanoma cells from proliferating or migrating embryonic cells.

8.
Nat Commun ; 12(1): 1439, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33664251

RESUMO

Treatment of advanced melanoma with combined PD-1/CTLA-4 blockade commonly causes serious immune-mediated complications. Here, we identify a subset of patients predisposed to immune checkpoint blockade-related hepatitis who are distinguished by chronic expansion of effector memory CD4+ T cells (TEM cells). Pre-therapy CD4+ TEM cell expansion occurs primarily during autumn or winter in patients with metastatic disease and high cytomegalovirus (CMV)-specific serum antibody titres. These clinical features implicate metastasis-dependent, compartmentalised CMV reactivation as the cause of CD4+ TEM expansion. Pre-therapy CD4+ TEM expansion predicts hepatitis in CMV-seropositive patients, opening possibilities for avoidance or prevention. 3 of 4 patients with pre-treatment CD4+ TEM expansion who received αPD-1 monotherapy instead of αPD-1/αCTLA-4 therapy remained hepatitis-free. 4 of 4 patients with baseline CD4+ TEM expansion given prophylactic valganciclovir and αPD-1/αCTLA-4 therapy remained hepatitis-free. Our findings exemplify how pathogen exposure can shape clinical reactions after cancer therapy and how this insight leads to therapeutic innovations.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Antígeno CTLA-4/antagonistas & inibidores , Infecções por Citomegalovirus/tratamento farmacológico , Hepatite A/prevenção & controle , Inibidores de Checkpoint Imunológico/uso terapêutico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Antivirais/uso terapêutico , Linfócitos T CD4-Positivos/transplante , Linfócitos T CD8-Positivos/imunologia , Citomegalovirus/efeitos dos fármacos , Citomegalovirus/imunologia , Hepatite A/imunologia , Hepatite A/virologia , Humanos , Memória Imunológica/imunologia , Melanoma/tratamento farmacológico , Valganciclovir/uso terapêutico , Carga Viral
9.
Leuk Lymphoma ; 62(5): 1107-1115, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33353431

RESUMO

In order to differentiate prognostic subgroups of patients with aggressive B-cell lymphoma, we analyzed the expression of 800 miRNAs with the NanoString nCounter human miRNA assay on a cohort of 228 FFPE samples of patients enrolled in the RICOVER-60 and MegaCHOEP trials. We identified significant miRNA signatures for overall survival (OS) and progression-free survival (PFS) by LASSO-penalized linear Cox-regression. High expression levels of miR-130a-3p and miR-423-5p indicate a better prognosis, whereas high levels of miR-374b-5p, miR-590-5p, miR-186-5p, and miR-106b-5p increase patients' risk levels for OS. Regarding PFS high expression of miR-365a-5p in addition to the other two miRNAs improves the prognosis and high levels of miR374a-5p, miR-106b-5p, and miR-590-5p, connects with increased risk and poor prognosis. We identified miRNA signatures to subdivide patients into two different risk groups. These prognostic models may be used in risk stratification in future clinical trials and help making personalized therapy decisions.


Assuntos
Linfoma de Células B , MicroRNAs , Biomarcadores Tumorais/genética , Humanos , Linfoma de Células B/diagnóstico , Linfoma de Células B/genética , MicroRNAs/genética , Prognóstico , Intervalo Livre de Progressão
10.
Sci Rep ; 10(1): 7876, 2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32398793

RESUMO

Diffuse large B-cell lymphoma (DLBCL) is commonly classified by gene expression profiling according to its cell of origin (COO) into activated B-cell (ABC)-like and germinal center B-cell (GCB)-like subgroups. Here we report the application of label-free nano-liquid chromatography - Sequential Window Acquisition of all THeoretical fragment-ion spectra - mass spectrometry (nanoLC-SWATH-MS) to the COO classification of DLBCL in formalin-fixed paraffin-embedded (FFPE) tissue. To generate a protein signature capable of predicting Affymetrix-based GCB scores, the summed log2-transformed fragment ion intensities of 780 proteins quantified in a training set of 42 DLBCL cases were used as independent variables in a penalized zero-sum elastic net regression model with variable selection. The eight-protein signature obtained showed an excellent correlation (r = 0.873) between predicted and true GCB scores and yielded only 9 (21.4%) minor discrepancies between the three classifications: ABC, GCB, and unclassified. The robustness of the model was validated successfully in two independent cohorts of 42 and 31 DLBCL cases, the latter cohort comprising only patients aged >75 years, with Pearson correlation coefficients of 0.846 and 0.815, respectively, between predicted and NanoString nCounter based GCB scores. We further show that the 8-protein signature is directly transferable to both a triple quadrupole and a Q Exactive quadrupole-Orbitrap mass spectrometer, thus obviating the need for proprietary instrumentation and reagents. This method may therefore be used for robust and competitive classification of DLBCLs on the protein level.


Assuntos
Linhagem da Célula/genética , Perfilação da Expressão Gênica/métodos , Linfoma Difuso de Grandes Células B/genética , Proteínas/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Linfócitos B/metabolismo , Linfócitos B/patologia , Cromatografia Líquida/métodos , Formaldeído , Centro Germinativo/metabolismo , Humanos , Linfoma Difuso de Grandes Células B/classificação , Linfoma Difuso de Grandes Células B/metabolismo , Espectrometria de Massas/métodos , Nanotecnologia/métodos , Inclusão em Parafina/métodos , Proteínas/genética , Proteoma/genética , Fixação de Tecidos/métodos
11.
Nat Commun ; 11(1): 402, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31964861

RESUMO

Establishing gene regulatory networks during differentiation or reprogramming requires master or pioneer transcription factors (TFs) such as PU.1, a prototype master TF of hematopoietic lineage differentiation. To systematically determine molecular features that control its activity, here we analyze DNA-binding in vitro and genome-wide in vivo across different cell types with native or ectopic PU.1 expression. Although PU.1, in contrast to classical pioneer factors, is unable to access nucleosomal target sites in vitro, ectopic induction of PU.1 leads to the extensive remodeling of chromatin and redistribution of partner TFs. De novo chromatin access, stable binding, and redistribution of partner TFs both require PU.1's N-terminal acidic activation domain and its ability to recruit SWI/SNF remodeling complexes, suggesting that the latter may collect and distribute co-associated TFs in conjunction with the non-classical pioneer TF PU.1.


Assuntos
Montagem e Desmontagem da Cromatina/fisiologia , Redes Reguladoras de Genes , Hematopoese/genética , Nucleossomos/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Transativadores/metabolismo , Sítios de Ligação/genética , Diferenciação Celular/genética , Linhagem Celular Tumoral , Proteínas Cromossômicas não Histona/metabolismo , DNA/metabolismo , Voluntários Saudáveis , Células-Tronco Hematopoéticas/fisiologia , Humanos , Leucaférese , Domínios Proteicos , RNA-Seq
12.
J Comput Biol ; 27(3): 342-355, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31995401

RESUMO

The gene expression profile of a tissue averages the expression profiles of all cells in this tissue. Digital tissue deconvolution addresses the following inverse problem: given the expression profile y of a tissue, what is the cellular composition c of that tissue? If X is a matrix whose columns are reference profiles of individual cell types, the composition c can be computed by minimizing ℒ ( y - X c ) for a given loss function ℒ . Current methods use predefined all-purpose loss functions. They successfully quantify the dominating cells of a tissue, while often falling short in detecting small cell populations. In this study we use training data to learn the loss function ℒ along with the composition c . This allows us to adapt to application-specific requirements such as focusing on small cell populations or distinguishing phenotypically similar cell populations. Our method quantifies large cell fractions as accurately as existing methods and significantly improves the detection of small cell populations and the distinction of similar cell types.


Assuntos
Biologia Computacional/métodos , Melanoma/genética , Algoritmos , Expressão Gênica , Humanos , Mutação com Perda de Função , Aprendizado de Máquina
13.
J Comput Biol ; 27(3): 386-389, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31995409

RESUMO

Digital tissue deconvolution (DTD) estimates the cellular composition of a tissue from its bulk gene-expression profile. For this, DTD approximates the bulk as a mixture of cell-specific expression profiles. Different tissues have different cellular compositions, with cells in different activation states, and embedded in different environments. Consequently, DTD can profit from tailoring the deconvolution model to a specific tissue context. Loss-function learning adapts DTD to a specific tissue context, such as the deconvolution of blood, or a specific type of tumor tissue. We provide software for loss-function learning, for its validation and visualization, and for applying the DTD models to new data.


Assuntos
Biologia Computacional/métodos , Transcriptoma , Humanos , Especificidade de Órgãos , Análise de Sequência de RNA , Software
14.
Leukemia ; 34(2): 543-552, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31530861

RESUMO

Diffuse large B-cell lymphoma (DLBCL) is a disease with heterogeneous outcome. Stromal signatures have been correlated to survival in DLBCL. Their use, however, is hampered by the lack of assays for formalin-fixed paraffin-embedded material (FFPE). We constructed a lymphoma-associated macrophage interaction signature (LAMIS) interrogating features of the microenvironment using a NanoString assay applicable to FFPE. The clinical impact of the signature could be validated in a cohort of 466 patients enrolled in prospective clinical trials of the German High-Grade Non-Hodgkin Lymphoma Study Group (DSHNHL). Patients with high expression of the signature (LAMIShigh) had shorter EFS, PFS, and OS. Multivariate analyses revealed independence from IPI factors in EFS (HR 1.7, 95% CI 1.2-2.4, p-value = 0.001), PFS (HR 1.8, 95% CI 1.2-2.5, p-value = 0.001) and OS (HR 1.8, 95% CI 1.3-2.7, p-value = 0.001). Multivariate analyses adjusted for the IPI factors showed the signature to be independent from COO, MYC rearrangements and double expresser status (DE). LAMIShigh and simultaneous DE status characterized a patient subgroup with dismal prognosis and early relapse. Our data underline the importance of the microenvironment in prognosis. Combined analysis of stromal features, the IPI and DE may provide a new rationale for targeted therapy.


Assuntos
Linfoma Difuso de Grandes Células B/patologia , Linfoma não Hodgkin/patologia , Macrófagos/patologia , Feminino , Humanos , Linfoma Difuso de Grandes Células B/metabolismo , Linfoma não Hodgkin/metabolismo , Macrófagos/metabolismo , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Prospectivos , Proteínas Proto-Oncogênicas c-myc/metabolismo , Microambiente Tumoral/fisiologia
15.
Bioinformatics ; 36(1): 241-249, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31250881

RESUMO

MOTIVATION: Cancer progresses by accumulating genomic events, such as mutations and copy number alterations, whose chronological order is key to understanding the disease but difficult to observe. Instead, cancer progression models use co-occurrence patterns in cross-sectional data to infer epistatic interactions between events and thereby uncover their most likely order of occurrence. State-of-the-art progression models, however, are limited by mathematical tractability and only allow events to interact in directed acyclic graphs, to promote but not inhibit subsequent events, or to be mutually exclusive in distinct groups that cannot overlap. RESULTS: Here we propose Mutual Hazard Networks (MHN), a new Machine Learning algorithm to infer cyclic progression models from cross-sectional data. MHN model events by their spontaneous rate of fixation and by multiplicative effects they exert on the rates of successive events. MHN compared favourably to acyclic models in cross-validated model fit on four datasets tested. In application to the glioblastoma dataset from The Cancer Genome Atlas, MHN proposed a novel interaction in line with consecutive biopsies: IDH1 mutations are early events that promote subsequent fixation of TP53 mutations. AVAILABILITY AND IMPLEMENTATION: Implementation and data are available at https://github.com/RudiSchill/MHN. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Algoritmos , Biologia Computacional , Glioblastoma , Modelos Genéticos , Biologia Computacional/métodos , Estudos Transversais , Genoma/genética , Glioblastoma/genética , Humanos , Aprendizado de Máquina , Mutação
16.
Mol Oncol ; 14(3): 571-589, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31825135

RESUMO

Macrophages (Mφ) are abundantly present in the tumor microenvironment and may predict outcome in solid tumors and defined lymphoma subtypes. Mφ heterogeneity, the mechanisms of their recruitment, and their differentiation into lymphoma-promoting, alternatively activated M2-like phenotypes are still not fully understood. Therefore, further functional studies are required to understand biological mechanisms associated with human tumor-associated Mφ (TAM). Here, we show that the global mRNA expression and protein abundance of human Mφ differentiated in Hodgkin lymphoma (HL)-conditioned medium (CM) differ from those of Mφ educated by conditioned media from diffuse large B-cell lymphoma (DLBCL) cells or, classically, by macrophage colony-stimulating factor (M-CSF). Conditioned media from HL cells support TAM differentiation through upregulation of surface antigens such as CD40, CD163, CD206, and PD-L1. In particular, RNA and cell surface protein expression of mannose receptor 1 (MRC1)/CD206 significantly exceed the levels induced by classical M-CSF stimulation in M2-like Mφ; this is regulated by interleukin 13 to a large extent. Functionally, high CD206 enhances mannose-dependent endocytosis and uptake of type I collagen. Together with high matrix metalloprotease9 secretion, HL-TAMs appear to be active modulators of the tumor matrix. Preclinical in ovo models show that co-cultures of HL cells with monocytes or Mφ support dissemination of lymphoma cells via lymphatic vessels, while tumor size and vessel destruction are decreased in comparison with lymphoma-only tumors. Immunohistology of human HL tissues reveals a fraction of cases feature large numbers of CD206-positive cells, with high MRC1 expression being characteristic of HL-stage IV. In summary, the lymphoma-TAM interaction contributes to matrix-remodeling and lymphoma cell dissemination.


Assuntos
Meios de Cultivo Condicionados/farmacologia , Doença de Hodgkin/metabolismo , Linfoma de Células B/metabolismo , Macrófagos/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptores Imunológicos/metabolismo , Microambiente Tumoral , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Antígeno B7-H1/metabolismo , Antígenos CD40/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Embrião de Galinha , Membrana Corioalantoide/metabolismo , Membrana Corioalantoide/patologia , Colágeno Tipo I/metabolismo , Meios de Cultivo Condicionados/metabolismo , Imunofluorescência , Doença de Hodgkin/imunologia , Doença de Hodgkin/patologia , Humanos , Interleucina-13/metabolismo , Linfoma de Células B/imunologia , Linfoma de Células B/patologia , Macrófagos/efeitos dos fármacos , Glicoproteínas de Membrana/imunologia , Monócitos/metabolismo , Metástase Neoplásica/imunologia , Proteoma/genética , Proteoma/metabolismo , RNA-Seq , Receptores de Superfície Celular/metabolismo , Receptores Imunológicos/imunologia , Regulação para Cima , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Biol Proced Online ; 21: 13, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31303867

RESUMO

BACKGROUND: For analysis of the tumor microenvironment in diffuse large B-cell lymphoma (DLBCL) tissue samples, it is desirable to obtain information about counts and distribution of different macrophage subtypes. Until now, macrophage counts are mostly inferred from gene expression analysis of whole tissue sections, providing only indirect information. Direct analysis of immunohistochemically (IHC) fluorescence stained tissue samples is confronted with several difficulties, e.g. high variability of shape and size of target macrophages and strongly inhomogeneous intensity of staining. Consequently, application of commercial software is largely restricted to very rough analysis modes, and most macrophage counts are still obtained by manual counting in microarrays or high power fields, thus failing to represent the heterogeneity of tumor microenvironment adequately. METHODS: We describe a Rudin-Osher-Fatemi (ROF) filter based segmentation approach for whole tissue samples, combining floating intensity thresholding and rule-based feature detection. Method is validated against manual counts and compared with two commercial software kits (Tissue Studio 64, Definiens AG, and Halo, Indica Labs) and a straightforward machine-learning approach in a set of 50 test images. Further, the novel method and both commercial packages are applied to a set of 44 whole tissue sections. Outputs are compared with gene expression data available for the same tissue samples. Finally, the ROF based method is applied to 44 expert-specified tumor subregions for testing selection and subsampling strategies. RESULTS: Among all tested methods, the novel approach is best correlated with manual count (0.9297). Automated detection of evaluation subregions proved to be fully reliable. Comparison with gene expression data obtained for the same tissue samples reveals only moderate to low correlation levels. Subsampling within tumor subregions is possible with results almost identical to full sampling. Mean macrophage size in tumor subregions is 152.5±111.3 µm2. CONCLUSIONS: ROF based approach is successfully applied to detection of IHC stained macrophages in DLBCL tissue samples. The method competes well with existing commercial software kits. In difference to them, it is fully automated, externally repeatable, independent on training data and completely documented. Comparison with gene expression data indicates that image morphometry constitutes an independent source of information about antibody-polarized macrophage occurence and distribution.

18.
J Mol Med (Berl) ; 97(6): 879-888, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31001651

RESUMO

Despite multiple publications, molecular signatures predicting the course of hepatocellular carcinoma (HCC) have not yet been integrated into clinical routine decision-making. Given the diversity of published signatures, optimal number, best combinations, and benefit of functional associations of genes in prognostic signatures remain to be defined. We investigated a vast number of randomly chosen gene sets (varying between 1 and 10,000 genes) to encompass the full range of prognostic gene sets on 242 transcriptomic profiles of patients with HCC. Depending on the selected size, 4.7 to 23.5% of all random gene sets exhibit prognostic potential by separating patient subgroups with significantly diverse survival. This was further substantiated by investigating gene sets and signaling pathways also resulting in a comparable high number of significantly prognostic gene sets. However, combining multiple random gene sets using "swarm intelligence" resulted in a significantly improved predictability for approximately 63% of all patients. In these patients, approx. 70% of all random 50-gene containing gene sets resulted in equal and stable prediction of survival. For all other patients, a reliable prediction seems highly unlikely for any selected gene set. Using a machine learning and independent validation approach, we demonstrated a high reliability of random gene sets and swarm intelligence in HCC prognosis. Ultimately, these findings were validated in two independent patient cohorts and independent technical platforms (microarray, RNASeq). In conclusion, we demonstrate that using "swarm intelligence" of multiple gene sets for prognosis prediction may not only be superior but also more robust for predictive purposes. KEY MESSAGES: Molecular signatures predicting HCC have not yet been integrated into clinical routine Depending on the selected size, 4.7 to 23.5% of all random gene sets exhibit prognostic potential; independent of the technical platform (microarray, RNASeq) Using "swarm intelligence" resulted in a significantly improved predictability In these patients, approx. 70% of all random 50-gene containing gene sets resulted in equal and stable prediction of survival Overall, "swarm intelligence" is superior and more robust for predictive purposes in HCC.


Assuntos
Carcinoma Hepatocelular/genética , Genes Neoplásicos , Neoplasias Hepáticas/genética , Análise por Conglomerados , Estudos de Coortes , Bases de Dados Genéticas , Regulação Neoplásica da Expressão Gênica , Ontologia Genética , Humanos , Prognóstico , Reprodutibilidade dos Testes , Transdução de Sinais/genética , Análise de Sobrevida
19.
BMC Cancer ; 19(1): 322, 2019 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-30953469

RESUMO

BACKGROUND: MYC is a heterogeneously expressed transcription factor that plays a multifunctional role in many biological processes such as cell proliferation and differentiation. It is also associated with many types of cancer including the malignant lymphomas. There are two types of aggressive B-cell lymphoma, namely Burkitt lymphoma (BL) and a subgroup of diffuse large cell lymphoma (DLBCL), which both carry MYC translocations and overexpress MYC but both differ significantly in their clinical outcome. In DLBCL, MYC translocations are associated with an aggressive behavior and poor outcome, whereas MYC-positive BL show a superior outcome. METHODS: To shed light on this phenomenon, we investigated the different modes of actions of MYC in aggressive B-cell lymphoma cell lines subdivided into three groups: (i) MYC-positive BL, (ii) DLBCL with MYC translocation (DLBCLpos) and (iii) DLBCL without MYC translocation (DLBCLneg) for control. In order to identify genome-wide MYC-DNA binding sites a chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-Seq) was performed. In addition, ChIP-Seq for H3K4me3 was used for determination of genomic regions accessible for transcriptional activity. These data were supplemented with gene expression data derived from RNA-Seq. RESULTS: Bioinformatics integration of all data sets revealed different MYC-binding patterns and transcriptional profiles in MYC-positive BL and DLBCL cell lines indicating different functional roles of MYC for gene regulation in aggressive B-cell lymphomas. Based on this multi-omics analysis we identified ADGRE5 (alias CD97) - a member of the EGF-TM7 subfamily of adhesion G protein-coupled receptors - as a MYC target gene, which is specifically expressed in BL but not in DLBCL regardless of MYC translocation. CONCLUSION: Our study describes a diverse genome-wide MYC-DNA binding pattern in BL and DLBCL cell lines with and without MYC translocations. Furthermore, we identified ADREG5 as a MYC target gene able to discriminate between BL and DLBCL irrespectively of the presence of MYC breaks in DLBCL. Since ADGRE5 plays an important role in tumor cell formation, metastasis and invasion, it might also be instrumental to better understand the different pathobiology of BL and DLBCL and help to explain discrepant clinical characteristics of BL and DLBCL.


Assuntos
Antígenos CD/genética , Linfoma de Burkitt/genética , Regulação Neoplásica da Expressão Gênica , Linfoma Difuso de Grandes Células B/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Linfoma de Burkitt/patologia , Linhagem Celular Tumoral , Biologia Computacional , Conjuntos de Dados como Assunto , Perfilação da Expressão Gênica , Humanos , Linfoma Difuso de Grandes Células B/patologia , Proteínas Proto-Oncogênicas c-myc/genética , Receptores Acoplados a Proteínas G , Análise de Sequência de RNA , Translocação Genética
20.
Nat Commun ; 9(1): 2858, 2018 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-30030423

RESUMO

Human regulatory macrophages (Mreg) have shown early clinical promise as a cell-based adjunct immunosuppressive therapy in solid organ transplantation. It is hypothesised that recipient CD4+ T cell responses are actively regulated through direct allorecognition of donor-derived Mregs. Here we show that human Mregs convert allogeneic CD4+ T cells to IL-10-producing, TIGIT+ FoxP3+-induced regulatory T cells that non-specifically suppress bystander T cells and inhibit dendritic cell maturation. Differentiation of Mreg-induced Tregs relies on multiple non-redundant mechanisms that are not exclusive to interaction of Mregs and T cells, including signals mediated by indoleamine 2,3-dioxygenase, TGF-ß, retinoic acid, Notch and progestagen-associated endometrial protein. Preoperative administration of donor-derived Mregs to living-donor kidney transplant recipients results in an acute increase in circulating TIGIT+ Tregs. These results suggest a feed-forward mechanism by which Mreg treatment promotes allograft acceptance through rapid induction of direct-pathway Tregs.


Assuntos
Macrófagos/imunologia , Receptores Imunológicos/metabolismo , Linfócitos T Reguladores/imunologia , Aloenxertos , Animais , Diferenciação Celular/imunologia , Células Dendríticas/imunologia , Fatores de Transcrição Forkhead/metabolismo , Rejeição de Enxerto , Humanos , Interleucina-10/metabolismo , Transplante de Rim , Receptores de Lipopolissacarídeos/metabolismo , Camundongos , Fenótipo , Transdução de Sinais , Linfócitos T Reguladores/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Transplante Homólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA