Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur J Immunol ; 52(6): 895-906, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35365883

RESUMO

CD8+ memory T cells (TM ) are crucial for long-term protection from infections and cancer. Multiple cell types and cytokines are involved in the regulation of CD8+ T cell responses and subsequent TM formation. Besides their direct antiviral effects, type I interferons (IFN-I) modulate CD8+ T cell immunity via their action on several immune cell subsets. However, it is largely unclear how nonimmune cells are involved in this multicellular network modulating CD8+ TM formation. Fibroblastic reticular cells (FRCs) form the 3D scaffold of secondary lymphoid organs, express the IFN-I receptor (IFNAR), and modulate adaptive immune responses. However, it is unclear whether and how early IFNAR signals in lymph node (LN) FRCs affect CD8+ TM differentiation. Using peptide vaccination and viral infection, we studied CD8+ TM differentiation in mice with an FRC-specific IFNAR deletion (FRCΔIFNAR ). We show here that the differentiation of CD8+ TCR-transgenic T cells into central memory cells (TCM ) is enhanced in peptide-vaccinated FRCΔIFNAR mice. Conversely, vesicular stomatitis virus infection of FRCΔIFNAR mice is associated with impaired TCM formation and the accumulation of vesicular stomatitis virus specific double-positive CD127hi KLRG-1hi effector memory T cells. In summary, we provide evidence for a context-dependent contribution of FRC-specific IFNAR signaling to CD8+ TM differentiation.


Assuntos
Vacinas Anticâncer , Estomatite Vesicular , Animais , Linfócitos T CD8-Positivos , Fibroblastos , Camundongos , Camundongos Endogâmicos C57BL , Vacinas de Subunidades Antigênicas , Estomatite Vesicular/metabolismo , Estomatite Vesicular/patologia
2.
iScience ; 24(6): 102519, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34142033

RESUMO

During inflammatory diseases, cancer, and infection, the cGAS/STING pathway is known to recognize foreign or self-DNA in the cytosol and activate an innate immune response. Here, we report that negative-strand RNA paramyxoviruses, Nipah virus (NiV), and measles virus (MeV), can also trigger the cGAS/STING axis. Although mice deficient for MyD88, TRIF, and MAVS still moderately control NiV infection when compared with wild-type mice, additional STING deficiency resulted in 100% lethality, suggesting synergistic roles of these pathways in host protection. Moreover, deletion of cGAS or STING resulted in decreased type I interferon production with enhanced paramyxoviral infection in both human and murine cells. Finally, the phosphorylation and ubiquitination of STING, observed during viral infections, confirmed the activation of cGAS/STING pathway by NiV and MeV. Our data suggest that cGAS/STING activation is critical in controlling paramyxovirus infection and possibly represents attractive targets to develop countermeasures against severe disease induced by these pathogens.

3.
PLoS Pathog ; 16(2): e1008279, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32023327

RESUMO

IFN-γ is an enigmatic cytokine that shows direct anti-viral effects, confers upregulation of MHC-II and other components relevant for antigen presentation, and that adjusts the composition and balance of complex cytokine responses. It is produced during immune responses by innate as well as adaptive immune cells and can critically affect the course and outcome of infectious diseases, autoimmunity, and cancer. To selectively analyze the function of innate immune cell-derived IFN-γ, we generated conditional IFN-γOFF mice, in which endogenous IFN-γ expression is disrupted by a loxP flanked gene trap cassette inserted into the first intron of the IFN-γ gene. IFN-γOFF mice were intercrossed with Ncr1-Cre or CD4-Cre mice that express Cre mainly in NK cells (IFN-γNcr1-ON mice) or T cells (IFN-γCD4-ON mice), respectively. Rosa26RFP reporter mice intercrossed with Ncr1-Cre mice showed selective RFP expression in more than 80% of the NK cells, while upon intercrossing with CD4-Cre mice abundant RFP expression was detected in T cells, but also to a minor extent in other immune cell subsets. Previous studies showed that IFN-γ expression is needed to promote survival of vaccinia virus (VACV) infection. Interestingly, during VACV infection of wild type and IFN-γCD4-ON mice two waves of serum IFN-γ were induced that peaked on day 1 and day 3/4 after infection. Similarly, VACV infected IFN-γNcr1-ON mice mounted two waves of IFN-γ responses, of which the first one was moderately and the second one profoundly reduced when compared with WT mice. Furthermore, IFN-γNcr1-ON as well as IFN-γCD4-ON mice survived VACV infection, whereas IFN-γOFF mice did not. As expected, ex vivo analysis of splenocytes derived from VACV infected IFN-γNcr1-ON mice showed IFN-γ expression in NK cells, but not T cells, whereas IFN-γOFF mice showed IFN-γ expression neither in NK cells nor T cells. VACV infected IFN-γNcr1-ON mice mounted normal cytokine responses, restored neutrophil accumulation, and showed normal myeloid cell distribution in blood and spleen. Additionally, in these mice normal MHC-II expression was detected on peripheral macrophages, whereas IFN-γOFF mice did not show MHC-II expression on such cells. In conclusion, upon VACV infection Ncr1 positive cells including NK cells mount two waves of early IFN-γ responses that are sufficient to promote the induction of protective anti-viral immunity.


Assuntos
Antígenos Ly/imunologia , Regulação da Expressão Gênica/imunologia , Interferon gama/imunologia , Células Matadoras Naturais/imunologia , Receptor 1 Desencadeador da Citotoxicidade Natural/imunologia , Vaccinia virus/imunologia , Vacínia/imunologia , Animais , Antígenos Ly/genética , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/imunologia , Interferon gama/genética , Células Matadoras Naturais/patologia , Camundongos , Camundongos Transgênicos , Receptor 1 Desencadeador da Citotoxicidade Natural/genética , Linfócitos T/imunologia , Linfócitos T/patologia , Vacínia/genética , Vacínia/patologia , Vaccinia virus/genética
4.
J Infect Dis ; 221(Suppl 4): S401-S406, 2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-31853535

RESUMO

Interferon (IFN) type I plays a critical role in the protection of mice from lethal Nipah virus (NiV) infection, but mechanisms responsible for IFN-I induction remain unknown. In the current study, we demonstrated the critical role of the mitochondrial antiviral signaling protein signaling pathway in IFN-I production and NiV replication in murine embryonic fibroblasts in vitro, and the redundant but essential roles of both mitochondrial antiviral signaling protein and myeloid differentiation primary response 88 adaptors, but not toll/interleukin-1 receptor/resistance [TIR] domain-containing adaptor-inducing IFN-ß (TRIF), in the control of NiV infection in mice. These results reveal potential novel targets for antiviral intervention and help in understanding NiV immunopathogenesis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Infecções por Henipavirus/imunologia , Infecções por Henipavirus/virologia , Fator 88 de Diferenciação Mieloide/metabolismo , Vírus Nipah , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteína DEAD-box 58/genética , Proteína DEAD-box 58/metabolismo , Regulação da Expressão Gênica/imunologia , Interferon Tipo I/genética , Interferon Tipo I/metabolismo , Interferon beta/genética , Interferon beta/metabolismo , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Fator 88 de Diferenciação Mieloide/genética , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo
5.
Virulence ; 9(1): 1669-1684, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30403913

RESUMO

Infection of healthy individuals with human cytomegalovirus (HCMV) is usually unnoticed and results in life-long latency, whereas HCMV reactivation as well as infection of newborns or immunocompromised patients can cause life-threatening disease. To better understand HCMV pathogenesis we studied mechanisms that restrict HCMV spread. We discovered that HCMV-infected cells can directly trigger plasmacytoid dendritic cells (pDC) to mount antiviral type I interferon (IFN-I) responses, even in the absence of cell-free virus. In contrast, monocyte-derived cells only expressed IFN-I when stimulated by cell-free HCMV, or upon encounter of HCMV-infected cells that already produced cell-free virus. Nevertheless, also in the absence of cell-free virus, i.e., upon co-culture of infected epithelial/endothelial cells and monocyte-derived macrophages (moMΦ) or dendritic cells (moDC), antiviral responses were induced that limited HCMV spread. The induction of this antiviral effect was dependent on cell-cell contact, whereas cell-free supernatants from co-culture experiments also inhibited virus spread, implying that soluble factors were critically needed. Interestingly, the antiviral effect was independent of IFN-γ, TNF-α, and IFN-I as indicated by cytokine inhibition experiments using neutralizing antibodies or the vaccinia virus-derived soluble IFN-I binding protein B18R, which traps human IFN-α and IFN-ß. In conclusion, our results indicate that human macrophages and dendritic cells can limit HCMV spread by IFN-I dependent as well as independent mechanisms, whereas the latter ones might be particularly relevant for the restriction of HCMV transmission via cell-to-cell spread.


Assuntos
Citocinas/imunologia , Citomegalovirus , Macrófagos/imunologia , Anticorpos Neutralizantes/imunologia , Técnicas de Cocultura , Meios de Cultura , Citocinas/antagonistas & inibidores , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/virologia , Humanos , Interferon Tipo I/imunologia , Interferon beta/imunologia , Macrófagos/virologia , Fator de Necrose Tumoral alfa/imunologia , Replicação Viral/efeitos dos fármacos
6.
Mol Pharm ; 14(11): 4098-4112, 2017 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-28974092

RESUMO

The attenuated live vaccine strain bacille Calmette-Guérin (BCG) is currently the only available vaccine against tuberculosis (TB), but is largely ineffective against adult pulmonary TB, the most common disease form. This is in part due to BCG's ability to interfere with the host innate immune response, a feature that might be targeted to enhance the potency of this vaccine. Here, we investigated the ability of chitosan-based nanoparticles (pIC-NPs) containing polyinosinic-polycytidylic acid (poly(I:C)), an inducer of innate immunity via Toll-like receptor 3 (TLR3), to enhance the immunogenicity of BCG in mouse bone marrow derived macrophages (BMDM) in vitro. Incorporation of poly(I:C) into NPs protected it against degradation by ribonucleases and increased its uptake by mouse BMDM. Whereas soluble poly(I:C) was ineffective, pIC-NPs strongly enhanced the proinflammatory immune response of BCG-infected macrophages in a synergistic fashion, as evident by increased production of cytokines and induction of nitric oxide synthesis. Using macrophages from mice deficient in key signaling molecules involved in the pathogen recognition response, we identified combined activation of MyD88- and TRIF-dependent TLR signaling pathways to be essential for the synergistic effect between BCG and NP. Moreover, synergy was strongly dependent on the order of the two stimuli, with TLR activation by BCG functioning as the priming event for the subsequent pIC-NP stimulus, which acted through an auto-/paracrine type I interferon (IFN) feedback loop. Our results provide a foundation for a promising new approach to enhance BCG-vaccine immunogenicity by costimulation with NPs. They also contribute to a molecular understanding of the observed synergistic interaction between the pIC-NPs and BCG vaccine.


Assuntos
Vacina BCG/imunologia , Nanopartículas/química , Poli I-C/química , Animais , Imunidade Inata/fisiologia , Interferon Tipo I/metabolismo , Ativação de Macrófagos/fisiologia , Macrófagos/metabolismo , Camundongos , Receptor 3 Toll-Like/metabolismo
7.
Virulence ; 8(7): 1303-1315, 2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28422568

RESUMO

Type I interferons (IFN-I), such as IFN-α and IFN-ß are important messengers in the host response against bacterial infections. Knowledge about the role of IFN-I in infections by nontuberculous mycobacteria (NTM) is limited. Here we show that macrophages infected with pathogens of the Mycobacterium avium complex produced significantly lower amounts of IFN-ß than macrophages infected with the opportunistic pathogen M. smegmatis. To dissect the molecular mechanisms of this phenomenon, we focused on the obligate pathogen Mycobacterium avium ssp paratuberculosis (MAP) and the opportunistic M. smegmatis. Viability of both bacteria was required for induction of IFN-ß in macrophages. Both bacteria induced IFN-ß via the cGAS-STING-TBK1-IRF3/7-pathway of IFN-ß activation. Stronger phosphorylation of TBK1 and higher amounts of extracellular bacterial DNA in the macrophage cytosol were found in M. smegmatis infected macrophages than in MAP infected macrophages. After intraperitoneal infection of mice, a strong Ifnb induction by M. smegmatis correlated with clearance of the bacteria. In contrast, MAP only induced weak Ifnb expression which correlated with bacterial persistence and increased number of granulomas in the liver. In mice lacking the type I interferon receptor we observed improved survival of M. smegmatis while survival of MAP was similar to that in wildtype mice. On the other hand, treatment of MAP infected wildtype mice with the IFN-I inducer poly(I:C) or recombinant IFN-ß impaired the survival of MAP. This indicates an essential role of IFN-I in clearing infections by MAP and M. smegmatis. The expression level of IFN-I is decisive for transient versus persistent NTM infection.


Assuntos
Fator Regulador 3 de Interferon/metabolismo , Fator Regulador 7 de Interferon/metabolismo , Interferon beta/metabolismo , Infecções por Mycobacterium não Tuberculosas/metabolismo , Mycobacterium avium subsp. paratuberculosis/fisiologia , Mycobacterium smegmatis/fisiologia , Nucleotidiltransferases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Feminino , Interações Hospedeiro-Patógeno , Humanos , Fator Regulador 3 de Interferon/genética , Fator Regulador 7 de Interferon/genética , Interferon beta/genética , Macrófagos/microbiologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Mycobacterium não Tuberculosas/genética , Infecções por Mycobacterium não Tuberculosas/microbiologia , Mycobacterium avium subsp. paratuberculosis/genética , Mycobacterium smegmatis/genética , Nucleotidiltransferases/genética , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais
8.
J Immunol ; 198(4): 1595-1605, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28077601

RESUMO

Among innovative adjuvants conferring a Th1-shift, RNAdjuvant is a promising candidate. This adjuvant consists of a 547-nt uncapped noncoding ssRNA containing polyU repeats that is stabilized by a cationic carrier peptide. Whereas vaccination of mice with an influenza subunit vaccine induced moderate virus-specific IgG1, vaccination together with RNAdjuvant significantly enhanced this IgG1 and additionally promoted the formation of IgG2b/c, which is indicative of Th1 responses. Furthermore, such sera neutralized influenza virus, whereas this effect was not detected upon vaccination with the subunit vaccine alone. Similarly, upon vaccination with virus-like particles displaying vesicular stomatitis virus G protein, RNAdjuvant promoted the formation of virus-specific IgG2b/c and enhanced neutralizing IgG responses to an extent that mice were protected against lethal virus infection. RNAdjuvant induced dendritic cells to upregulate activation markers and produce IFN-I. Although these effects were strictly TLR7 dependent, RNAdjuvant-mediated augmentation of vaccine responses needed concurrent TLR and RIG-I-like helicase signaling. This was indicated by the absence of the adjuvant effect in vaccinated MyD88-/-Cardif-/- mice, which are devoid of TLR (with the exception of TLR3) and RIG-I-like helicase signaling, whereas in vaccinated MyD88-/- mice the adjuvant effect was reduced. Notably, i.m. RNAdjuvant injection induced local IFN-I responses and did not induce systemic effects, implying good tolerability and a favorable safety profile for RNAdjuvant.


Assuntos
Adjuvantes Imunológicos , Imunoglobulina G/sangue , Vacinas contra Influenza/imunologia , Glicoproteínas de Membrana/imunologia , RNA não Traduzido/imunologia , Receptor 7 Toll-Like/imunologia , Vacinas de Partículas Semelhantes a Vírus/imunologia , Adjuvantes Imunológicos/efeitos adversos , Animais , Anticorpos Antivirais/sangue , Proteína DEAD-box 58/imunologia , Proteína DEAD-box 58/metabolismo , Imunoglobulina G/imunologia , Vacinas contra Influenza/administração & dosagem , Glicoproteínas de Membrana/administração & dosagem , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Fator 88 de Diferenciação Mieloide/deficiência , Fator 88 de Diferenciação Mieloide/metabolismo , Células Th1/imunologia , Receptor 7 Toll-Like/metabolismo , Vacinação , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem , Proteínas do Envelope Viral/administração & dosagem , Proteínas do Envelope Viral/imunologia
9.
Int J Cancer ; 139(6): 1350-7, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27116225

RESUMO

The importance of endogenous Type I IFNs in cancer immune surveillance is well established by now. Their role in polarization of tumor-associated neutrophilic granulocytes into anti-tumor effector cells has been recently demonstrated. Yet, the cellular source of Type I IFNs as well as the mode of induction is not clearly defined. Here, we demonstrate that IFN-ß is induced by growing murine tumors. Induction is mainly mediated via STING-dependent signaling pathways, suggesting tumor derived DNA as trigger. Transcription factors IRF3 and IRF5 were activated under these conditions which is consistent with tumor infiltrating dendritic cells (DCs) being the major cellular source of IFN-ß at the tumor site. Besides DCs, tumor cells themselves are induced to contribute to the production of IFN-ß. Taken together, our data provide further information on immune surveillance by Type I IFNs and suggest novel potent cellular targets for future cancer therapy.


Assuntos
Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Interferon Tipo I/metabolismo , Proteínas de Membrana/metabolismo , Neoplasias/imunologia , Neoplasias/metabolismo , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Expressão Gênica , Genes Reporter , Vigilância Imunológica , Interferon Tipo I/genética , Camundongos , Camundongos Transgênicos , Neoplasias/genética , Neoplasias/patologia , Transdução de Sinais , Carga Tumoral
10.
J Immunol ; 193(6): 3045-54, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25127863

RESUMO

Several studies indicated that TLR as well as retinoic acid-inducible gene I-like helicase (RLH) signaling contribute to vesicular stomatitis virus (VSV)-mediated triggering of type I IFN (IFN-I) responses. Nevertheless, TLR-deficient MyD88(-/-)Trif(-/-) mice and RLH-deficient caspase activation and recruitment domain adaptor inducing IFN-ß (Cardif)(-/-) mice showed only marginally enhanced susceptibility to lethal VSV i.v. infection. Therefore, we addressed whether concomitant TLR and RLH signaling, or some other additional mechanism, played a role. To this end, we generated MyD88(-/-)Trif(-/-)Cardif(-/-) (MyTrCa(-/-)) mice that succumbed to low-dose i.v. VSV infection with similar kinetics as IFN-I receptor-deficient mice. Three independent approaches (i.e., analysis of IFN-α/ß serum levels, experiments with IFN-ß reporter mice, and investigation of local IFN-stimulated gene induction) revealed that MyTrCa(-/-) mice did not mount IFN-I responses following VSV infection. Of note, treatment with rIFN-α protected the animals, qualifying MyTrCa(-/-) mice as a model to study the contribution of different immune cell subsets to the production of antiviral IFN-I. Upon adoptive transfer of wild-type plasmacytoid dendritic cells and subsequent VSV infection, MyTrCa(-/-) mice displayed significantly reduced viral loads in peripheral organs and showed prolonged survival. On the contrary, adoptive transfer of wild-type myeloid dendritic cells did not have such effects. Analysis of bone marrow chimeric mice revealed that TLR and RLH signaling of radioresistant and radiosensitive cells was required for efficient protection. Thus, upon VSV infection, plasmacytoid dendritic cell-derived IFN-I primarily protects peripheral organs, whereas concomitant TLR and RLH signaling of radioresistant stroma cells as well as of radiosensitive immune cells is needed to effectively protect against lethal disease.


Assuntos
RNA Helicases DEAD-box/imunologia , Tolerância a Radiação , Receptores Toll-Like/genética , Estomatite Vesicular/imunologia , Vírus da Estomatite Vesicular Indiana/imunologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transporte Vesicular/genética , Animais , Proteína DEAD-box 58 , RNA Helicases DEAD-box/genética , Células Dendríticas/imunologia , Células Dendríticas/transplante , Imunoterapia Adotiva , Interferon-alfa/sangue , Interferon-alfa/genética , Interferon-alfa/imunologia , Interferon beta/sangue , Interferon beta/genética , Interferon beta/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Mieloides/imunologia , Células Mieloides/transplante , Fator 88 de Diferenciação Mieloide/genética , Receptor de Interferon alfa e beta/genética , Transdução de Sinais/imunologia , Células Estromais/imunologia , Células Estromais/efeitos da radiação , Estomatite Vesicular/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA