Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Pharmacol Transl Sci ; 7(6): 1864-1873, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38898951

RESUMO

Design strategies that lead to a more focused in vivo delivery of functionalized nanoparticles (NPs) and their cargo can potentially maximize their therapeutic efficiency while reducing systemic effects, broadening their clinical applications. Here, we report the development of a noncovalent labeling approach where immunoglobulin G (IgG)-decorated NPs can be directed to a cancer cell using a simple, linear bispecific protein adaptor, termed MFE23-ZZ. MFE23-ZZ was created by fusing a single-chain fragment variable domain, termed MFE23, recognizing carcinoembryonic antigen (CEA) expressed on tumor cells, to a small protein ZZ module, which binds to the Fc fragment of IgG. As a proof of concept, monoclonal antibodies (mAbs) were generated against a NP coat protein, namely, gas vesicle protein A (GvpA) of Halobacterium salinarum gas vesicles (GVs). The surface of each GV was therapeutically derivatized with the photoreactive agent chlorin e6 (Ce6GVs) and anti-GvpA mAbs were subsequently bound to GvpA on the surface of each Ce6GV. The bispecific ligand MFE23-ZZ was then bound to mAb-decorated Ce6GVs via their Fc domain, resulting in a noncovalent tripartite complex, namely, MFE23.ZZ-2B10-Ce6GV. This complex enhanced the intracellular uptake of Ce6GVs into human CEA-expressing murine MC38 colon carcinoma cells (MC38.CEA) relative to the CEA-negative parental cell line MC38 in vitro, making them more sensitive to light-induced cell killing. These results suggest that the surface of NP can be rapidly and noncovalently functionalized to target tumor-associated antigen-expressing tumor cells using simple bispecific linkers and any IgG-labeled cargo. This noncovalent approach is readily applicable to other types of functionalized NPs.

2.
Sci Rep ; 13(1): 4609, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36944702

RESUMO

PVR (poliovirus receptor) functions as a ligand that signals through TIGIT and CD96 to induce suppression of T-cell and NK-cell responses. Alternatively, PVR binds to CD226, resulting in a co-stimulatory signal. To date, TIGIT antibody antagonists have been developed to restore immune functions and allow PVR to signal though CD226 in the context of cancer immunotherapy. Due to PVR receptor heterogeneity, agonizing either of these pathways with a recombinant form of the PVR extracellular domain represents a therapeutic strategy for either immunosuppression or activation. Here, we developed a minimal murine PVR-Fc fusion construct, consisting of only the IgV domain of PVR (vdPVR-Fc), and assessed its ability to dampen inflammatory responses in a murine model of psoriasis. vdPVR-Fc and PVR-Fc containing the full-length extracellular domain bound to TIGIT, CD96 and CD226 with similar low nanomolar affinities as defined by surface plasmon resonance. vdPVR-Fc was also able to suppress the in-vitro proliferation of murine CD4+ and CD8+ T-cells in mixed splenocyte cultures. Importantly, vdPVR-Fc delayed the onset, and reduced inflammatory responses (scaling and thickness) in a murine model of psoriasis. Collectively, our results suggest that the minimal IgV domain of PVR is sufficient to dampen immune responses in-vitro and attenuate symptoms of psoriasis in-vivo.


Assuntos
Linfócitos T CD8-Positivos , Receptores Virais , Animais , Camundongos , Antígenos CD/metabolismo , Modelos Animais de Doenças , Receptores Imunológicos/metabolismo , Receptores Virais/metabolismo , Tolerância Imunológica , Psoríase/imunologia
3.
Cell Immunol ; 379: 104581, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35933919

RESUMO

VISTA has been proposed to function both as a ligand and a receptor to dampen immune responses, although the role of VISTA as a ligand on myeloid cells has been largely ignored. We observed that a VISTA receptor is rapidly expressed on the surface of macrophages and neutrophils upon exposure to lipopolysaccharides (LPS). Importantly, treating LPS-stimulated macrophages and neutrophils ex vivo with a high-avidity agonist of the VISTA receptor (VISTA.COMP) results in the downregulation of pro-inflammatory cytokines and the increased expression of immunoregulatory genes. Finally, the in vivo administration of VISTA.COMP attenuated the rise in circulating TNFα, IL-6, and IL-12p40 in LPS-treated mice.


Assuntos
Lipopolissacarídeos , Neutrófilos , Animais , Citocinas/metabolismo , Inflamação , Ligantes , Lipopolissacarídeos/metabolismo , Macrófagos , Proteínas de Membrana , Camundongos
4.
JCI Insight ; 5(22)2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-33208551

RESUMO

Adoptive cell therapy involves the infusion of tumor-reactive T cells into patients with cancer to provide antitumor immunity. The ex vivo expansion and differentiation of such T cells are key parameters that affect their therapeutic potential. Human T cells are presently expanded in culture through the use of anti-CD3 and anti-CD28 mAbs immobilized on beads, expressed on cells, or assembled in the context of soluble antibody complexes. Here we report the design of a small, bispecific single-chain variable fragment construct agonizing both CD3 and CD28 pathways. This soluble T cell expansion protein, termed T-CEP, activates, expands, and differentiates human T cells ex vivo at concentrations in the femtomolar range. Importantly, T-CEP promotes the preferential growth of human CD8+ T cells over the course of 12 days in comparison with methods involving immobilized anti-CD3 mAb/soluble anti-CD28 mAb or soluble anti-CD3/CD28 mAb complexes. The differentiation profile of the resulting human T cell population is also singularly affected by T-CEP, favoring the expansion of a preferred CD8+CD27+ T cell phenotype. The activity profile of T-CEP on human T cells ex vivo suggests its use in generating human T cell populations that are more suited for adoptive cell therapy.


Assuntos
Anticorpos Monoclonais/imunologia , Antígenos CD28/imunologia , Complexo CD3/imunologia , Linfócitos T CD8-Positivos/imunologia , Proliferação de Células , Ativação Linfocitária/imunologia , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/imunologia , Anticorpos Monoclonais/metabolismo , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/metabolismo , Diferenciação Celular , Humanos , Imunoterapia Adotiva , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo
5.
Immunobiology ; 222(6): 858-867, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28552269

RESUMO

Macrophage migration inhibitory factor (MIF) was first described as a cytokine 50 years ago, and emerged in mammals as a pleiotropic protein with pro-inflammatory, chemotactic, and growth-promoting activities. In addition, MIF has gained substantial attention as a pivotal upstream mediator of innate and adaptive immune responses and with pathologic roles in several diseases. Of less importance in mammals is an intrinsic but non-physiologic enzymatic activity that points to MIF's evolution from an ancient defense molecule. Therefore, it is not surprising that mif-like genes also have been found across a range of different organisms including bacteria, plants, protozoa, helminths, molluscs, arthropods, fish, amphibians and birds. While Genebank analysis identifying mif-like genes across species is extensive, contained herein is an overview of the non-mammalian MIF-like proteins that have been most well studied experimentally. For many of these organisms, MIF contributes to an innate defense system or plays a role in development. For parasitic organisms however, MIF appears to function as a virulence factor aiding in the establishment or persistence of infection by modulating the host immune response. Consequently, a combined targeting of both parasitic and host MIF could lead to more effective treatment strategies for parasitic diseases of socioeconomic importance.


Assuntos
Bactérias/imunologia , Imunidade Inata , Infecções/imunologia , Fatores Inibidores da Migração de Macrófagos/metabolismo , Macrófagos/imunologia , Fatores de Virulência , Animais , Interações Hospedeiro-Patógeno , Humanos , Evasão da Resposta Imune
6.
PLoS Pathog ; 12(9): e1005862, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27632207

RESUMO

Animal African trypanosomosis is a major threat to the economic development and human health in sub-Saharan Africa. Trypanosoma congolense infections represent the major constraint in livestock production, with anemia as the major pathogenic lethal feature. The mechanisms underlying anemia development are ill defined, which hampers the development of an effective therapy. Here, the contribution of the erythropoietic and erythrophagocytic potential as well as of hemodilution to the development of T. congolense-induced anemia were addressed in a mouse model of low virulence relevant for bovine trypanosomosis. We show that in infected mice, splenic extramedullary erythropoiesis could compensate for the chronic low-grade type I inflammation-induced phagocytosis of senescent red blood cells (RBCs) in spleen and liver myeloid cells, as well as for the impaired maturation of RBCs occurring in the bone marrow and spleen. Rather, anemia resulted from hemodilution. Our data also suggest that the heme catabolism subsequent to sustained erythrophagocytosis resulted in iron accumulation in tissue and hyperbilirubinemia. Moreover, hypoalbuminemia, potentially resulting from hemodilution and liver injury in infected mice, impaired the elimination of toxic circulating molecules like bilirubin. Hemodilutional thrombocytopenia also coincided with impaired coagulation. Combined, these effects could elicit multiple organ failure and uncontrolled bleeding thus reduce the survival of infected mice. MIF (macrophage migrating inhibitory factor), a potential pathogenic molecule in African trypanosomosis, was found herein to promote erythrophagocytosis, to block extramedullary erythropoiesis and RBC maturation, and to trigger hemodilution. Hence, these data prompt considering MIF as a potential target for treatment of natural bovine trypanosomosis.


Assuntos
Anemia/metabolismo , Eritropoese , Hematopoese Extramedular , Oxirredutases Intramoleculares/metabolismo , Fatores Inibidores da Migração de Macrófagos/metabolismo , Trypanosoma congolense/metabolismo , Tripanossomíase Africana/metabolismo , Anemia/genética , Anemia/parasitologia , Anemia/patologia , Animais , Medula Óssea/metabolismo , Medula Óssea/parasitologia , Medula Óssea/patologia , Bovinos , Modelos Animais de Doenças , Eritrócitos/metabolismo , Eritrócitos/parasitologia , Eritrócitos/patologia , Hemodiluição , Humanos , Oxirredutases Intramoleculares/genética , Fatores Inibidores da Migração de Macrófagos/genética , Camundongos , Camundongos Knockout , Baço/metabolismo , Baço/parasitologia , Baço/patologia , Trombocitopenia/genética , Trombocitopenia/metabolismo , Trombocitopenia/parasitologia , Trombocitopenia/patologia , Tripanossomíase Africana/genética , Tripanossomíase Africana/patologia
7.
PLoS Pathog ; 10(9): e1004414, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25255103

RESUMO

African trypanosomiasis is a chronic debilitating disease affecting the health and economic well-being of many people in developing countries. The pathogenicity associated with this disease involves a persistent inflammatory response, whereby M1-type myeloid cells, including Ly6C(high) inflammatory monocytes, are centrally implicated. A comparative gene analysis between trypanosusceptible and trypanotolerant animals identified MIF (macrophage migrating inhibitory factor) as an important pathogenic candidate molecule. Using MIF-deficient mice and anti-MIF antibody treated mice, we show that MIF mediates the pathogenic inflammatory immune response and increases the recruitment of inflammatory monocytes and neutrophils to contribute to liver injury in Trypanosoma brucei infected mice. Moreover, neutrophil-derived MIF contributed more significantly than monocyte-derived MIF to increased pathogenic liver TNF production and liver injury during trypanosome infection. MIF deficient animals also featured limited anemia, coinciding with increased iron bio-availability, improved erythropoiesis and reduced RBC clearance during the chronic phase of infection. Our data suggest that MIF promotes the most prominent pathological features of experimental trypanosome infections (i.e. anemia and liver injury), and prompt considering MIF as a novel target for treatment of trypanosomiasis-associated immunopathogenicity.


Assuntos
Anemia/imunologia , Apoptose/imunologia , Eritrócitos/imunologia , Oxirredutases Intramoleculares/fisiologia , Fatores Inibidores da Migração de Macrófagos/fisiologia , Macrófagos/imunologia , Trypanosoma brucei brucei/patogenicidade , Tripanossomíase Africana/imunologia , Anemia/metabolismo , Anemia/parasitologia , Anemia/patologia , Animais , Western Blotting , Medula Óssea/imunologia , Medula Óssea/parasitologia , Medula Óssea/patologia , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Eritrócitos/metabolismo , Eritrócitos/parasitologia , Eritrócitos/patologia , Feminino , Citometria de Fluxo , Fígado/imunologia , Fígado/parasitologia , Fígado/patologia , Macrófagos/metabolismo , Macrófagos/parasitologia , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/imunologia , Monócitos/metabolismo , Monócitos/parasitologia , Monócitos/patologia , Neutrófilos/imunologia , Neutrófilos/metabolismo , Neutrófilos/parasitologia , Neutrófilos/patologia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Baço/imunologia , Baço/metabolismo , Baço/parasitologia , Baço/patologia , Tripanossomíase Africana/metabolismo , Tripanossomíase Africana/parasitologia , Tripanossomíase Africana/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA