Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Autophagy ; 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37938186

RESUMO

Macroautophagy/autophagy is a tightly regulated cellular process integral to homeostasis and innate immunity. As such, dysregulation of autophagy is associated with cancer, neurodegenerative disorders, and infectious diseases. While numerous factors that promote autophagy have been characterized, the key mechanisms that prevent excessive autophagy are less well understood. Here, we identify CSNK2/CK2 (casein kinase 2) as a negative regulator of autophagy. Pharmacological inhibition of CSNK2 activity or siRNA-mediated depletion of CSNK2 increased basal autophagic flux in cell lines and primary human lung cells. Vice versa, ectopic expression of CSNK2 reduced autophagic flux. Mechanistically, CSNK2 interacted with the FLN (filamin)-NHL domain-containing tripartite motif (TRIM) family members TRIM2, TRIM3 and TRIM71. Our data show that recruitment of CSNK2 to the C-terminal NHL domain of TRIM3 lead to its robust phosphorylation at serine 661 by CSNK2. A phosphorylation-defective mutant of TRIM3 was unable to reduce autophagosome numbers indicating that phosphorylation by CSNK2 is required for TRIM-mediated autophagy inhibition. All three TRIMs facilitated inactivation of the ULK1-BECN1 autophagy initiation complex by facilitating ULK1 serine 757 phosphorylation. Inhibition of CSNK2 promoted autophagy upon influenza A virus (IAV) and measles virus (MeV) infection. In line with this, targeting of CSNK2 or depletion of TRIM2, TRIM3 or TRIM71 enhanced autophagy-dependent restriction of IAV, MeV and human immunodeficiency virus 1 (HIV-1). Thus, our results identify the CSNK2-TRIM2, -TRIM3, -TRIM71 axis as a key regulatory pathway that limits autophagy. Targeting this axis may allow for therapeutic induction of autophagy against viral infections and in diseases associated with dysregulated autophagy.

2.
Eur J Nucl Med Mol Imaging ; 50(10): 3050-3061, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37261473

RESUMO

PURPOSE: Fibroblast activation protein-α (FAP)-targeting radioligands have recently demonstrated high diagnostic potential. However, their therapeutic value is impaired by the short tumor residence time. Several strategies have been tested to overcome this limitation, but a head-to-head comparison has never been done. With the aim to identify strengths and limitations of the suggested strategies, we compared the monomer FAPI-46 versus (a) its dimer (FAPI-46-F1D), (b) two albumin binders conjugates (FAPI-46-Ibu (ibuprofen) and FAPI-46-EB (Evans Blue)), and (c) cyclic peptide FAP-2286. METHODS: 177Lu-labeled ligands were evaluated in vitro in cell lines with low (HT-1080.hFAP) and high (HEK-293.hFAP) humanFAP expression. SPECT/CT imaging and biodistribution studies were conducted in HT-1080.hFAP and HEK-293.hFAP xenografts. The areas under the curve (AUC) of the tumor uptake and tumor-to-critical-organs ratios and the absorbed doses were estimated. RESULTS: Radioligands showed IC50 in the picomolar range. Striking differences were observed in vivo regarding tumor uptake, residence, specificity, and total body distribution. All [177Lu]Lu-FAPI-46-based radioligands showed similar uptake between the two tumor models. [177Lu]Lu-FAP-2286 showed higher uptake in HEK-293.hFAP and the least background. The AUC of the tumor uptake and absorbed dose was higher for [177Lu]Lu-FAPI-46-F1D and the two albumin binder conjugates, [177Lu]Lu-FAPI-46-Ibu and [177Lu]Lu-FAPI-46-EB, in HT1080.hFAP xenografts and for [177Lu]Lu-FAPI-46-EB and [177Lu]Lu-FAP-2286 in HEK293.hFAP xenografts. The tumor-to-critical-organs AUC values and the absorbed doses were in favor of [177Lu]Lu-FAP-2286, but tumor-to-kidneys. CONCLUSION: The study indicated dimerization and cyclic peptide structures as promising strategies for prolonging tumor residence time, sparing healthy tissues. Albumin binding strategy outcome depended on the albumin binding moiety. The peptide showed advantages in terms of tumor-to-background ratios, besides tumor-to-kidneys, but its tumor uptake was FAP expression-dependent.


Assuntos
Albuminas , Peptídeos , Humanos , Células HEK293 , Distribuição Tecidual , Linhagem Celular Tumoral , Albuminas/química , Peptídeos Cíclicos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Radioisótopos de Gálio
3.
Cell Host Microbe ; 30(9): 1255-1268.e5, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-35931073

RESUMO

SARS-CoV-2 Omicron rapidly outcompeted other variants and currently dominates the COVID-19 pandemic. Its enhanced transmission and immune evasion are thought to be driven by numerous mutations in the Omicron Spike protein. Here, we systematically introduced BA.1 and/or BA.2 Omicron Spike mutations into the ancestral Spike protein and examined the impacts on Spike function, processing, and susceptibility to neutralization. Individual mutations of S371F/L, S375F, and T376A in the ACE2-receptor-binding domain as well as Q954H and N969K in the hinge region 1 impaired infectivity, while changes to G339D, D614G, N764K, and L981F moderately enhanced it. Most mutations in the N-terminal region and receptor-binding domain reduced the sensitivity of the Spike protein to neutralization by sera from individuals vaccinated with the BNT162b2 vaccine and by therapeutic antibodies. Our results represent a systematic functional analysis of Omicron Spike adaptations that have allowed this SARS-CoV-2 variant to dominate the current pandemic.


Assuntos
COVID-19 , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/química , Enzima de Conversão de Angiotensina 2 , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacina BNT162 , Humanos , Pandemias , SARS-CoV-2/genética , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Proteínas do Envelope Viral
4.
J Virol ; 96(11): e0059422, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35543509

RESUMO

It has recently been shown that an early SARS-CoV-2 isolate (NL-02-2020) hijacks interferon-induced transmembrane proteins (IFITMs) for efficient replication in human lung cells, cardiomyocytes, and gut organoids. To date, several "variants of concern" (VOCs) showing increased infectivity and resistance to neutralization have emerged and globally replaced the early viral strains. Here, we determined whether the five current SARS-CoV-2 VOCs (Alpha, Beta, Gamma, Delta, and Omicron) maintained the dependency on IFITM proteins for efficient replication. We found that depletion of IFITM2 strongly reduces viral RNA production by all VOCs in the human epithelial lung cancer cell line Calu-3. Silencing of IFITM1 had modest effects, while knockdown of IFITM3 resulted in an intermediate phenotype. Strikingly, depletion of IFITM2 generally reduced infectious virus production by more than 4 orders of magnitude. In addition, an antibody directed against the N terminus of IFITM2 inhibited SARS-CoV-2 VOC replication in induced pluripotent stem cell (iPSC)-derived alveolar epithelial type II cells, thought to represent major viral target cells in the lung. In conclusion, endogenously expressed IFITM proteins (especially IFITM2) are critical cofactors for efficient replication of genuine SARS-CoV-2 VOCs, including the currently dominant Omicron variant. IMPORTANCE Recent data indicate that SARS-CoV-2 requires endogenously expressed IFITM proteins for efficient infection. However, the results were obtained with an early SARS-CoV-2 isolate. Thus, it remained to be determined whether IFITMs are also important cofactors for infection of emerging SARS-CoV-2 VOCs that outcompeted the original strains in the meantime. This includes the Omicron VOC, which currently dominates the pandemic. Here, we show that depletion of endogenous IFITM2 expression almost entirely prevents productive infection of Alpha, Beta, Gamma, Delta, and Omicron SARS-CoV-2 VOCs in human lung cells. In addition, an antibody targeting the N terminus of IFITM2 inhibited SARS-CoV-2 VOC replication in iPSC-derived alveolar epithelial type II cells. Our results show that SARS-CoV-2 VOCs, including the currently dominant Omicron variant, are strongly dependent on IFITM2 for efficient replication, suggesting a key proviral role of IFITMs in viral transmission and pathogenicity.


Assuntos
Pulmão , Proteínas de Membrana , SARS-CoV-2 , Replicação Viral , COVID-19/virologia , Linhagem Celular Tumoral , Humanos , Pulmão/virologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , Internalização do Vírus
5.
Front Pharmacol ; 12: 770283, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34733166

RESUMO

Translating the CRISPR/Cas9 genome editing technology into clinics is still hampered by rather unspecific, unsafe and/or inconvenient approaches for the delivery of its main components - the Cas9 endonuclease and a guide RNA - into cells. Here, we describe the development of a novel transient and non-viral Cas9 delivery strategy based on the translocation machinery of the Bacillus anthracis anthrax toxin, PA (protective antigen). We show that Cas9 variants fused to the N-terminus of the lethal factor or to a hexahistidine tag are shuttled through channels formed by PA into the cytosol of human cells. As proof-of-principle, we applied our new approach, denoted as CRISPA, to knock out lipolysis-stimulated lipoprotein receptor (LSR) in the human colon cancer cell line HCT116 and green-fluorescent protein (GFP) in human embryonic kidney 293T cells stably expressing GFP. Notably, we confirmed that the transporter PA can be adapted to recognize specific host cell-surface receptor proteins and may be optimized for cell type-selective delivery of Cas9. Altogether, CRISPA provides a novel, transient and non-viral way to deliver Cas9 into specific cells. Thus, this system is an additional step towards safe translation of the CRISPR/Cas9 technology into clinics.

6.
Nat Commun ; 12(1): 4584, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34321474

RESUMO

Interferon-induced transmembrane proteins (IFITMs 1, 2 and 3) can restrict viral pathogens, but pro- and anti-viral activities have been reported for coronaviruses. Here, we show that artificial overexpression of IFITMs blocks SARS-CoV-2 infection. However, endogenous IFITM expression supports efficient infection of SARS-CoV-2 in human lung cells. Our results indicate that the SARS-CoV-2 Spike protein interacts with IFITMs and hijacks them for efficient viral infection. IFITM proteins were expressed and further induced by interferons in human lung, gut, heart and brain cells. IFITM-derived peptides and targeting antibodies inhibit SARS-CoV-2 entry and replication in human lung cells, cardiomyocytes and gut organoids. Our results show that IFITM proteins are cofactors for efficient SARS-CoV-2 infection of human cell types representing in vivo targets for viral transmission, dissemination and pathogenesis and are potential targets for therapeutic approaches.


Assuntos
Enzima de Conversão de Angiotensina 2/genética , Antígenos de Diferenciação/genética , Proteínas de Membrana/genética , Proteínas de Ligação a RNA/genética , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Sequência de Aminoácidos , Enzima de Conversão de Angiotensina 2/antagonistas & inibidores , Enzima de Conversão de Angiotensina 2/metabolismo , Anticorpos Neutralizantes/farmacologia , Antígenos de Diferenciação/metabolismo , Sítios de Ligação , COVID-19/virologia , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Interações Hospedeiro-Patógeno/genética , Humanos , Interferon beta/farmacologia , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a RNA/antagonistas & inibidores , Proteínas de Ligação a RNA/metabolismo , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Glicoproteína da Espícula de Coronavírus/metabolismo , Ligação Viral/efeitos dos fármacos
8.
Cancer Res ; 81(7): 1758-1774, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33531371

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) still presents with a dismal prognosis despite intense research. Better understanding of cellular homeostasis could identify druggable targets to improve therapy. Here we propose RAD50-interacting protein 1 (RINT1) as an essential mediator of cellular homeostasis in PDAC. In a cohort of resected PDAC, low RINT1 protein expression correlated significantly with better survival. Accordingly, RINT1 depletion caused severe growth defects in vitro associated with accumulation of DNA double-strand breaks (DSB), G2 cell cycle arrest, disruption of Golgi-endoplasmic reticulum homeostasis, and cell death. Time-resolved transcriptomics corroborated by quantitative proteome and interactome analyses pointed toward defective SUMOylation after RINT1 loss, impairing nucleocytoplasmic transport and DSB response. Subcutaneous xenografts confirmed tumor response by RINT1 depletion, also resulting in a survival benefit when transferred to an orthotopic model. Primary human PDAC organoids licensed RINT1 relevance for cell viability. Taken together, our data indicate that RINT1 loss affects PDAC cell fate by disturbing SUMOylation pathways. Therefore, a RINT1 interference strategy may represent a new putative therapeutic approach. SIGNIFICANCE: These findings provide new insights into the aggressive behavior of PDAC, showing that RINT1 directly correlates with survival in patients with PDAC by disturbing the SUMOylation process, a crucial modification in carcinogenesis.


Assuntos
Carcinoma Ductal Pancreático , Proteínas de Ciclo Celular/fisiologia , Reparo do DNA/genética , Neoplasias Pancreáticas , Sumoilação , Animais , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Estudos de Coortes , Dano ao DNA/genética , Feminino , Homeostase/genética , Humanos , Camundongos , Camundongos Nus , Camundongos Transgênicos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Processamento de Proteína Pós-Traducional/genética , Sumoilação/genética
9.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33431697

RESUMO

GPR15 is a G protein-coupled receptor (GPCR) proposed to play a role in mucosal immunity that also serves as a major entry cofactor for HIV-2 and simian immunodeficiency virus (SIV). To discover novel endogenous GPR15 ligands, we screened a hemofiltrate (HF)-derived peptide library for inhibitors of GPR15-mediated SIV infection. Our approach identified a C-terminal fragment of cystatin C (CysC95-146) that specifically inhibits GPR15-dependent HIV-1, HIV-2, and SIV infection. In contrast, GPR15L, the chemokine ligand of GPR15, failed to inhibit virus infection. We found that cystatin C fragments preventing GPR15-mediated viral entry do not interfere with GPR15L signaling and are generated by proteases activated at sites of inflammation. The antiretroviral activity of CysC95-146 was confirmed in primary CD4+ T cells and is conserved in simian hosts of SIV infection. Thus, we identified a potent endogenous inhibitor of GPR15-mediated HIV and SIV infection that does not interfere with the physiological function of this GPCR.


Assuntos
Cistatina C/genética , Infecções por HIV/genética , Receptores Acoplados a Proteínas G/genética , Receptores de Peptídeos/genética , Síndrome de Imunodeficiência Adquirida dos Símios/genética , Animais , Infecções por HIV/patologia , Infecções por HIV/virologia , HIV-1/genética , HIV-1/patogenicidade , Humanos , Receptores Virais/genética , Transdução de Sinais/genética , Síndrome de Imunodeficiência Adquirida dos Símios/patologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/genética , Vírus da Imunodeficiência Símia/patogenicidade , Linfócitos T/metabolismo , Linfócitos T/virologia , Internalização do Vírus
10.
Cell Mol Gastroenterol Hepatol ; 11(4): 935-948, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33186749

RESUMO

BACKGROUND AND AIMS: The COVID-19 pandemic has spread worldwide and poses a severe health risk. While most patients present mild symptoms, descending pneumonia can lead to severe respiratory insufficiency. Up to 50% of patients show gastrointestinal symptoms like diarrhea or nausea, intriguingly associating with prolonged symptoms and increased severity. Thus, models to understand and validate drug efficiency in the gut of COVID-19 patients are of urgent need. METHODS: Human intestinal organoids derived from pluripotent stem cells (PSC-HIOs) have led, due to their complexity in mimicking human intestinal architecture, to an unprecedented number of successful disease models including gastrointestinal infections. Here, we employed PSC-HIOs to dissect SARS-CoV-2 pathogenesis and its inhibition by remdesivir, one of the leading drugs investigated for treatment of COVID-19. RESULTS: Immunostaining for viral entry receptor ACE2 and SARS-CoV-2 spike protein priming protease TMPRSS2 showed broad expression in the gastrointestinal tract with highest levels in the intestine, the latter faithfully recapitulated by PSC-HIOs. Organoids could be readily infected with SARS-CoV-2 followed by viral spread across entire PSC-HIOs, subsequently leading to organoid deterioration. However, SARS-CoV-2 spared goblet cells lacking ACE2 expression. Importantly, we challenged PSC-HIOs for drug testing capacity. Specifically, remdesivir effectively inhibited SARS-CoV-2 infection dose-dependently at low micromolar concentration and rescued PSC-HIO morphology. CONCLUSIONS: Thus, PSC-HIOs are a valuable tool to study SARS-CoV-2 infection and to identify and validate drugs especially with potential action in the gut.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Tratamento Farmacológico da COVID-19 , COVID-19/metabolismo , Células-Tronco Embrionárias Humanas , Mucosa Intestinal , Organoides , SARS-CoV-2/fisiologia , Replicação Viral/efeitos dos fármacos , Monofosfato de Adenosina/farmacologia , Alanina/farmacologia , Células CACO-2 , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Embrionárias Humanas/patologia , Células-Tronco Embrionárias Humanas/virologia , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Mucosa Intestinal/virologia , Organoides/metabolismo , Organoides/patologia , Organoides/virologia
11.
PLoS Pathog ; 16(8): e1008752, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32760121

RESUMO

Members of the family of pyrin and HIN domain containing (PYHIN) proteins play an emerging role in innate immunity. While absent in melanoma 2 (AIM2) acts a cytosolic sensor of non-self DNA and plays a key role in inflammasome assembly, the γ-interferon-inducible protein 16 (IFI16) restricts retroviral gene expression by sequestering the transcription factor Sp1. Here, we show that the remaining two human PYHIN proteins, i.e. myeloid cell nuclear differentiation antigen (MNDA) and pyrin and HIN domain family member 1 (PYHIN1 or IFIX) share this antiretroviral function of IFI16. On average, knock-down of each of these three nuclear PYHIN proteins increased infectious HIV-1 yield from human macrophages by more than an order of magnitude. Similarly, knock-down of IFI16 strongly increased virus transcription and production in primary CD4+ T cells. The N-terminal pyrin domain (PYD) plus linker region containing a nuclear localization signal (NLS) were generally required and sufficient for Sp1 sequestration and anti-HIV-1 activity of IFI16, MNDA and PYHIN1. Replacement of the linker region of AIM2 by the NLS-containing linker of IFI16 resulted in a predominantly nuclear localization and conferred direct antiviral activity to AIM2 while attenuating its ability to form inflammasomes. The reverse change caused nuclear-to-cytoplasmic relocalization of IFI16 and impaired its antiretroviral activity but did not result in inflammasome assembly. We further show that the Zn-finger domain of Sp1 is critical for the interaction with IFI16 supporting that pyrin domains compete with DNA for Sp1 binding. Finally, we found that human PYHIN proteins also inhibit Hepatitis B virus and simian vacuolating virus 40 as well as the LINE-1 retrotransposon. Altogether, our data show that IFI16, PYHIN1 and MNDA restrict HIV-1 and other viral pathogens by interfering with Sp1-dependent gene expression and support an important role of nuclear PYHIN proteins in innate antiviral immunity.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Núcleo Celular/metabolismo , Infecções por HIV/prevenção & controle , HIV-1/imunologia , Macrófagos/imunologia , Proteínas Nucleares/metabolismo , Fator de Transcrição Sp1/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/virologia , Núcleo Celular/genética , DNA Viral/genética , Células HEK293 , Infecções por HIV/imunologia , Infecções por HIV/patologia , Infecções por HIV/virologia , HIV-1/genética , HIV-1/isolamento & purificação , Células Hep G2 , Humanos , Imunidade Inata/imunologia , Inflamassomos/genética , Inflamassomos/imunologia , Macrófagos/metabolismo , Macrófagos/virologia , Proteínas Nucleares/genética , Fator de Transcrição Sp1/genética , Replicação Viral
12.
Science ; 369(6508): 1249-1255, 2020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32680882

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the current coronavirus disease 2019 (COVID-19) pandemic. A major virulence factor of SARS-CoVs is the nonstructural protein 1 (Nsp1), which suppresses host gene expression by ribosome association. Here, we show that Nsp1 from SARS-CoV-2 binds to the 40S ribosomal subunit, resulting in shutdown of messenger RNA (mRNA) translation both in vitro and in cells. Structural analysis by cryo-electron microscopy of in vitro-reconstituted Nsp1-40S and various native Nsp1-40S and -80S complexes revealed that the Nsp1 C terminus binds to and obstructs the mRNA entry tunnel. Thereby, Nsp1 effectively blocks retinoic acid-inducible gene I-dependent innate immune responses that would otherwise facilitate clearance of the infection. Thus, the structural characterization of the inhibitory mechanism of Nsp1 may aid structure-based drug design against SARS-CoV-2.


Assuntos
Betacoronavirus/química , Evasão da Resposta Imune , Imunidade Inata , Biossíntese de Proteínas , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo , Betacoronavirus/imunologia , Betacoronavirus/metabolismo , Betacoronavirus/fisiologia , Sítios de Ligação , COVID-19 , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Microscopia Crioeletrônica , Proteína DEAD-box 58/genética , Proteína DEAD-box 58/metabolismo , Humanos , Interferon beta/genética , Interferon beta/metabolismo , Modelos Moleculares , Pandemias , Pneumonia Viral/imunologia , Pneumonia Viral/virologia , Ligação Proteica , Domínios Proteicos , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , RNA Mensageiro/metabolismo , Receptores Imunológicos , Subunidades Ribossômicas Menores de Eucariotos/química , Subunidades Ribossômicas Menores de Eucariotos/metabolismo , SARS-CoV-2
13.
Sci Rep ; 10(1): 12241, 2020 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-32699244

RESUMO

Autophagy is a cellular homeostatic pathway with functions ranging from cytoplasmic protein turnover to immune defense. Therapeutic modulation of autophagy has been demonstrated to positively impact the outcome of autophagy-dysregulated diseases such as cancer or microbial infections. However, currently available agents lack specificity, and new candidates for drug development or potential cellular targets need to be identified. Here, we present an improved method to robustly detect changes in autophagy in a high-throughput manner on a single cell level, allowing effective screening. This method quantifies eGFP-LC3B positive vesicles to accurately monitor autophagy. We have significantly streamlined the protocol and optimized it for rapid quantification of large numbers of cells in little time, while retaining accuracy and sensitivity. Z scores up to 0.91 without a loss of sensitivity demonstrate the robustness and aptness of this approach. Three exemplary applications outline the value of our protocols and cell lines: (I) Examining autophagy modulating compounds on four different cell types. (II) Monitoring of autophagy upon infection with e.g. measles or influenza A virus. (III) CRISPR/Cas9 screening for autophagy modulating factors in T cells. In summary, we offer ready-to-use protocols to generate sensitive autophagy reporter cells and quantify autophagy in high-throughput assays.


Assuntos
Autofagia/imunologia , Ensaios de Triagem em Larga Escala/métodos , Mamíferos/imunologia , Animais , Sistemas CRISPR-Cas/imunologia , Linhagem Celular , Linhagem Celular Tumoral , Células HEK293 , Células HeLa , Humanos , Infecções/imunologia , Células Jurkat , Linfócitos T/imunologia , Células THP-1
14.
Nat Microbiol ; 5(10): 1247-1261, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32690953

RESUMO

To avoid innate sensing and immune control, human immunodeficiency virus type 1 (HIV-1) has to prevent the accumulation of viral complementary DNA species. Here, we show that the late HIV-1 accessory protein Vpu hijacks DNA repair mechanisms to promote degradation of nuclear viral cDNA in cells that are already productively infected. Vpu achieves this by interacting with RanBP2-RanGAP1*SUMO1-Ubc9 SUMO E3-ligase complexes at the nuclear pore to reprogramme promyelocytic leukaemia protein nuclear bodies and reduce SUMOylation of Bloom syndrome protein, unleashing end degradation of viral cDNA. Concomitantly, Vpu inhibits RAD52-mediated homologous repair of viral cDNA, preventing the generation of dead-end circular forms of single copies of the long terminal repeat and permitting sustained nucleolytic attack. Our results identify Vpu as a key modulator of the DNA repair machinery. We show that Bloom syndrome protein eliminates nuclear HIV-1 cDNA and thereby suppresses immune sensing and proviral hyper-integration. Therapeutic targeting of DNA repair may facilitate the induction of antiviral immunity and suppress proviral integration replenishing latent HIV reservoirs.


Assuntos
Reparo do DNA , Infecções por HIV/virologia , HIV-1/fisiologia , Interações Hospedeiro-Patógeno , Proteínas do Vírus da Imunodeficiência Humana/metabolismo , Imunidade Inata , Proteínas Virais Reguladoras e Acessórias/metabolismo , Integração Viral , Regulação Viral da Expressão Gênica , Infecções por HIV/genética , Infecções por HIV/imunologia , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Modelos Biológicos , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , Reparo de DNA por Recombinação , Sumoilação
15.
Cell Rep ; 27(7): 2092-2104.e10, 2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-31091448

RESUMO

Guanylate-binding protein (GBP) 5 is an interferon (IFN)-inducible cellular factor reducing HIV-1 infectivity by an incompletely understood mechanism. Here, we show that this activity is shared by GBP2, but not by other members of the human GBP family. GBP2/5 decrease the activity of the cellular proprotein convertase furin, which mediates conversion of the HIV-1 envelope protein (Env) precursor gp160 into mature gp120 and gp41. Because this process primes HIV-1 Env for membrane fusion, viral particles produced in the presence of GBP2/5 are poorly infectious due to increased incorporation of non-functional gp160. Furin activity is critical for the processing of envelope glycoproteins of many viral pathogens. Consistently, GBP2/5 also inhibit Zika, measles, and influenza A virus replication and decrease infectivity of viral particles carrying glycoproteins of Marburg and murine leukemia viruses. Collectively, our results show that GPB2/5 exert broad antiviral activity by suppressing the activity of the virus-dependency factor furin.


Assuntos
Furina/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Proteína gp120 do Envelope de HIV/metabolismo , Proteína gp41 do Envelope de HIV/metabolismo , HIV-1/metabolismo , Furina/genética , Proteínas de Ligação ao GTP/genética , Células HEK293 , Proteína gp120 do Envelope de HIV/genética , Proteína gp41 do Envelope de HIV/genética , HIV-1/genética , Humanos , Vírus da Influenza A/genética , Vírus da Influenza A/metabolismo , Vírus do Sarampo/genética , Vírus do Sarampo/metabolismo , Zika virus/genética , Zika virus/metabolismo
16.
Nat Microbiol ; 4(1): 164-176, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30420784

RESUMO

Tripartite motif (TRIM) proteins mediate antiviral host defences by either directly targeting viral components or modulating innate immune responses. Here we identify a mechanism of antiviral restriction in which a TRIM E3 ligase controls viral replication by regulating the structure of host cell centrosomes and thereby nuclear lamina integrity. Through RNAi screening we identified several TRIM proteins, including TRIM43, that control the reactivation of Kaposi's sarcoma-associated herpesvirus. TRIM43 was distinguished by its ability to restrict a broad range of herpesviruses and its profound upregulation during herpesvirus infection as part of a germline-specific transcriptional program mediated by the transcription factor DUX4. TRIM43 ubiquitinates the centrosomal protein pericentrin, thereby targeting it for proteasomal degradation, which subsequently leads to alterations of the nuclear lamina that repress active viral chromatin states. Our study identifies a role of the TRIM43-pericentrin-lamin axis in intrinsic immunity, which may be targeted for therapeutic intervention against herpesviral infections.


Assuntos
Antígenos/metabolismo , Centrossomo/metabolismo , Infecções por Herpesviridae/imunologia , Herpesvirus Humano 8/crescimento & desenvolvimento , Proteínas com Motivo Tripartido/metabolismo , Replicação Viral/fisiologia , Células A549 , Animais , Linhagem Celular Tumoral , Chlorocebus aethiops , Células HEK293 , Células HeLa , Infecções por Herpesviridae/prevenção & controle , Infecções por Herpesviridae/virologia , Proteínas de Homeodomínio/metabolismo , Humanos , Lâmina Nuclear/fisiologia , Interferência de RNA , RNA Interferente Pequeno/genética , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/fisiologia , Ubiquitinação , Células Vero , Replicação Viral/genética
17.
Nat Immunol ; 19(1): 53-62, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29180807

RESUMO

The sensor RIG-I detects double-stranded RNA derived from RNA viruses. Although RIG-I is also known to have a role in the antiviral response to DNA viruses, physiological RNA species recognized by RIG-I during infection with a DNA virus are largely unknown. Using next-generation RNA sequencing (RNAseq), we found that host-derived RNAs, most prominently 5S ribosomal RNA pseudogene 141 (RNA5SP141), bound to RIG-I during infection with herpes simplex virus 1 (HSV-1). Infection with HSV-1 induced relocalization of RNA5SP141 from the nucleus to the cytoplasm, and virus-induced shutoff of host protein synthesis downregulated the abundance of RNA5SP141-interacting proteins, which allowed RNA5SP141 to bind RIG-I and induce the expression of type I interferons. Silencing of RNA5SP141 strongly dampened the antiviral response to HSV-1 and the related virus Epstein-Barr virus (EBV), as well as influenza A virus (IAV). Our findings reveal that antiviral immunity can be triggered by host RNAs that are unshielded following depletion of their respective binding proteins by the virus.


Assuntos
Proteína DEAD-box 58/imunologia , Herpesvirus Humano 1/imunologia , Imunidade/imunologia , RNA Ribossômico 5S/imunologia , Animais , Células Cultivadas , Chlorocebus aethiops , Proteína DEAD-box 58/metabolismo , Expressão Gênica/imunologia , Células HEK293 , Herpesvirus Humano 1/fisiologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Interferon Tipo I/genética , Interferon Tipo I/imunologia , Interferon Tipo I/metabolismo , Camundongos Knockout , Pseudogenes/genética , Transporte de RNA/imunologia , RNA Ribossômico 5S/genética , RNA Ribossômico 5S/metabolismo , Receptores Imunológicos , Células Vero
18.
Cell Rep ; 16(5): 1315-1325, 2016 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-27425606

RESUMO

Antiviral response pathways induce interferon by higher-order assembly of signaling complexes called signalosomes. Assembly of the RIG-I signalosome is regulated by K63-linked polyubiquitin chains, which are synthesized by the E3 ubiquitin ligase, TRIM25. We have previously shown that the TRIM25 coiled-coil domain is a stable, antiparallel dimer that positions two catalytic RING domains on opposite ends of an elongated rod. We now show that the RING domain is a separate self-association motif that engages ubiquitin-conjugated E2 enzymes as a dimer. RING dimerization is required for catalysis, TRIM25-mediated RIG-I ubiquitination, interferon induction, and antiviral activity. We also provide evidence that RING dimerization and E3 ligase activity are promoted by binding of the TRIM25 SPRY domain to the RIG-I effector domain. These results indicate that TRIM25 actively participates in higher-order assembly of the RIG-I signalosome and helps to fine-tune the efficiency of the RIG-I-mediated antiviral response.


Assuntos
Antivirais/metabolismo , Proteína DEAD-box 58/metabolismo , Fatores de Transcrição/metabolismo , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Catálise , Linhagem Celular , Dimerização , Células HEK293 , Humanos , Interferons/metabolismo , Ligação Proteica , Receptores Imunológicos , Transdução de Sinais/fisiologia , Ubiquitinação/fisiologia
19.
Elife ; 42015 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-26609812

RESUMO

The cytosolic antiviral innate immune sensor RIG-I distinguishes 5' tri- or diphosphate containing viral double-stranded (ds) RNA from self-RNA by an incompletely understood mechanism that involves ATP hydrolysis by RIG-I's RNA translocase domain. Recently discovered mutations in ATPase motifs can lead to the multi-system disorder Singleton-Merten Syndrome (SMS) and increased interferon levels, suggesting misregulated signaling by RIG-I. Here we report that SMS mutations phenocopy a mutation that allows ATP binding but prevents hydrolysis. ATPase deficient RIG-I constitutively signals through endogenous RNA and co-purifies with self-RNA even from virus infected cells. Biochemical studies and cryo-electron microscopy identify a 60S ribosomal expansion segment as a dominant self-RNA that is stably bound by ATPase deficient RIG-I. ATP hydrolysis displaces wild-type RIG-I from this self-RNA but not from 5' triphosphate dsRNA. Our results indicate that ATP-hydrolysis prevents recognition of self-RNA and suggest that SMS mutations lead to unintentional signaling through prolonged RNA binding.


Assuntos
Trifosfato de Adenosina/metabolismo , RNA Helicases DEAD-box/metabolismo , RNA Viral/metabolismo , Linhagem Celular , Proteína DEAD-box 58 , Humanos , Hidrólise , Receptores Imunológicos , Especificidade por Substrato
20.
PLoS Pathog ; 10(4): e1004081, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24743923

RESUMO

RIG-I-like receptors (RLRs: RIG-I, MDA5 and LGP2) play a major role in the innate immune response against viral infections and detect patterns on viral RNA molecules that are typically absent from host RNA. Upon RNA binding, RLRs trigger a complex downstream signaling cascade resulting in the expression of type I interferons and proinflammatory cytokines. In the past decade extensive efforts were made to elucidate the nature of putative RLR ligands. In vitro and transfection studies identified 5'-triphosphate containing blunt-ended double-strand RNAs as potent RIG-I inducers and these findings were confirmed by next-generation sequencing of RIG-I associated RNAs from virus-infected cells. The nature of RNA ligands of MDA5 is less clear. Several studies suggest that double-stranded RNAs are the preferred agonists for the protein. However, the exact nature of physiological MDA5 ligands from virus-infected cells needs to be elucidated. In this work, we combine a crosslinking technique with next-generation sequencing in order to shed light on MDA5-associated RNAs from human cells infected with measles virus. Our findings suggest that RIG-I and MDA5 associate with AU-rich RNA species originating from the mRNA of the measles virus L gene. Corresponding sequences are poorer activators of ATP-hydrolysis by MDA5 in vitro, suggesting that they result in more stable MDA5 filaments. These data provide a possible model of how AU-rich sequences could activate type I interferon signaling.


Assuntos
RNA Helicases DEAD-box/metabolismo , Vírus do Sarampo/metabolismo , Sarampo/metabolismo , RNA Mensageiro/metabolismo , RNA Viral/metabolismo , Proteínas Virais/biossíntese , Linhagem Celular Tumoral , Proteína DEAD-box 58 , RNA Helicases DEAD-box/genética , Células HEK293 , Humanos , Helicase IFIH1 Induzida por Interferon , Sarampo/genética , Vírus do Sarampo/genética , RNA Mensageiro/genética , RNA Viral/genética , Receptores Imunológicos , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA