Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
MycoKeys ; 100: 69-94, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38025585

RESUMO

Molecular phylogenetic and chemical analyses, and morphological characterization of collections of North American Paraisaria specimens support the description of two new species and two new combinations for known species. P.cascadensissp. nov. is a pathogen of Cyphoderris (Orthoptera) from the Pacific Northwest USA and P.pseudoheteropodasp. nov. is a pathogen of cicadae (Hemiptera) from the Southeast USA. New combinations are made for Ophiocordycepsinsignis and O.monticola based on morphological, ecological, and chemical study. A new cyclopeptide family proved indispensable in providing chemotaxonomic markers for resolving species in degraded herbarium specimens for which DNA sequencing is intractable. This approach enabled the critical linkage of a 142-year-old type specimen to a phylogenetic clade. The diversity of Paraisaria in North America and the utility of chemotaxonomy for the genus are discussed.

2.
Phytopathology ; 112(10): 2044-2051, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35502928

RESUMO

For many plant-pathogenic or endophytic fungi, production of mycotoxins, which are toxic to humans, may present a fitness gain. However, associations between mycotoxin production and plant pathogenicity or virulence is inconsistent and difficult due to the complexity of these host-pathogen interactions and the influences of environmental and insect factors. Aflatoxin receives a lot of attention due to its potent toxicity and carcinogenicity but the connection between aflatoxin production and pathogenicity is complicated by the pathogenic ability and prevalence of nonaflatoxigenic isolates in crops. Other toxins directly aid fungi in planta, trichothecenes are important virulence factors, and ergot alkaloids limit herbivory and fungal consumption due to insect toxicity. We review a panel discussion at the American Phytopathological Society's Plant Health 2021 conference, which gathered diverse experts representing different research sectors, career stages, ethnicities, and genders to discuss the diverse roles of mycotoxins in the lifestyles of filamentous fungi of the families Clavicipitaceae, Trichocomaceae (Eurotiales), and Nectriaceae (Hypocreales).


Assuntos
Aflatoxinas , Alcaloides de Claviceps , Micotoxinas , Tricotecenos , Ecossistema , Feminino , Fungos , Humanos , Masculino , Micotoxinas/toxicidade , Doenças das Plantas , Fatores de Virulência
3.
Appl Microbiol Biotechnol ; 103(19): 8145-8155, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31482283

RESUMO

The environmental accumulation of polycyclic aromatic hydrocarbons (PAHs) is of great concern due to potential carcinogenic and mutagenic risks, as well as their resistance to remediation. While many fungi have been reported to break down PAHs in environments, the details of gene-based metabolic pathways are not yet comprehensively understood. Specifically, the genome-scale transcriptional responses of fungal PAH degradation have rarely been reported. In this study, we report the genomic and transcriptomic basis of PAH bioremediation by a potent fungal degrader, Dentipellis sp. KUC8613. The genome size of this fungus was 36.71 Mbp long encoding 14,320 putative protein-coding genes. The strain efficiently removed more than 90% of 100 mg/l concentration of PAHs within 10 days. The genomic and transcriptomic analysis of this white rot fungus highlights that the strain primarily utilized non-ligninolytic enzymes to remove various PAHs, rather than typical ligninolytic enzymes known for playing important roles in PAH degradation. PAH removal by non-ligninolytic enzymes was initiated by both different PAH-specific and common upregulation of P450s, followed by downstream PAH-transforming enzymes such as epoxide hydrolases, dehydrogenases, FAD-dependent monooxygenases, dioxygenases, and glycosyl- or glutathione transferases. Among the various PAHs, phenanthrene induced a more dynamic transcriptomic response possibly due to its greater cytotoxicity, leading to highly upregulated genes involved in the translocation of PAHs, a defense system against reactive oxygen species, and ATP synthesis. Our genomic and transcriptomic data provide a foundation of understanding regarding the mycoremediation of PAHs and the application of this strain for polluted environments.


Assuntos
Basidiomycota/genética , Basidiomycota/metabolismo , Perfilação da Expressão Gênica , Genômica , Redes e Vias Metabólicas/genética , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Biotransformação
4.
BMC Genomics ; 20(1): 120, 2019 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-30732559

RESUMO

BACKGROUND: Genes involved in production of secondary metabolites (SMs) in fungi are exceptionally diverse. Even strains of the same species may exhibit differences in metabolite production, a finding that has important implications for drug discovery. Unlike in other eukaryotes, genes producing SMs are often clustered and co-expressed in fungal genomes, but the genetic mechanisms involved in the creation and maintenance of these secondary metabolite biosynthetic gene clusters (SMBGCs) remains poorly understood. RESULTS: In order to address the role of genome architecture and chromosome scale structural variation in generating diversity of SMBGCs, we generated chromosome scale assemblies of six geographically diverse isolates of the insect pathogenic fungus Tolypocladium inflatum, producer of the multi-billion dollar lifesaving immunosuppressant drug cyclosporin, and utilized a Hi-C chromosome conformation capture approach to address the role of genome architecture and structural variation in generating intraspecific diversity in SMBGCs. Our results demonstrate that the exchange of DNA between heterologous chromosomes plays an important role in generating novelty in SMBGCs in fungi. In particular, we demonstrate movement of a polyketide synthase (PKS) and several adjacent genes by translocation to a new chromosome and genomic context, potentially generating a novel PKS cluster. We also provide evidence for inter-chromosomal recombination between nonribosomal peptide synthetases located within subtelomeres and uncover a polymorphic cluster present in only two strains that is closely related to the cluster responsible for biosynthesis of the mycotoxin aflatoxin (AF), a highly carcinogenic compound that is a major public health concern worldwide. In contrast, the cyclosporin cluster, located internally on chromosomes, was conserved across strains, suggesting selective maintenance of this important virulence factor for infection of insects. CONCLUSIONS: This research places the evolution of SMBGCs within the context of whole genome evolution and suggests a role for recombination between chromosomes in generating novel SMBGCs in the medicinal fungus Tolypocladium inflatum.


Assuntos
Cromossomos Fúngicos/genética , Ciclosporina/metabolismo , Rearranjo Gênico , Variação Genética , Hypocreales/genética , Hypocreales/metabolismo , Metabolismo Secundário/genética , Duplicação Cromossômica , Evolução Molecular , Genoma Fúngico/genética , Família Multigênica/genética , Recombinação Genética , Especificidade da Espécie
5.
IMA Fungus ; 8(2): 335-353, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29242779

RESUMO

The ending of dual nomenclatural systems for pleomorphic fungi in 2011 requires the reconciliation of competing names, ideally linked through culture based or molecular methods. The phylogenetic systematics of Hypocreales and its many genera have received extensive study in the last two decades, however resolution of competing names in Cordycipitaceae has not yet been addressed. Here we present a molecular phylogenetic investigation of Cordycipitaceae that enables identification of competing names in this family, and provides the basis upon which these names can be maintained or suppressed. The taxonomy presented here seeks to harmonize competing names by principles of priority, recognition of monophyletic groups, and the practical usage of affected taxa. In total, we propose maintaining nine generic names, Akanthomyces, Ascopolyporus, Beauveria, Cordyceps, Engyodontium, Gibellula, Hyperdermium, Parengyodontium, and Simplicillium and the rejection of eight generic names, Evlachovaea, Granulomanus, Isaria, Lecanicillium, Microhilum, Phytocordyceps, Synsterigmatocystis, and Torrubiella. Two new generic names, Hevansia and Blackwellomyces, and a new species, Beauveria blattidicola, are described. New combinations are also proposed in the genera Akanthomyces, Beauveria, Blackwellomyces, and Hevansia.

6.
G3 (Bethesda) ; 7(6): 1775-1789, 2017 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-28450370

RESUMO

Divergence of breeding system plays an important role in fungal speciation. Ectomycorrhizal fungi, however, pose a challenge for the study of reproductive biology because most cannot be mated under laboratory conditions. To overcome this barrier, we sequenced the draft genomes of the ectomycorrhizal sister species Rhizopogon vinicolor Smith and Zeller and R. vesiculosus Smith and Zeller (Basidiomycota, Boletales)-the first genomes available for Basidiomycota truffles-and characterized gene content and organization surrounding their mating type loci. Both species possess a pair of homeodomain transcription factor homologs at the mating type A-locus as well as pheromone receptor and pheromone precursor homologs at the mating type B-locus. Comparison of Rhizopogon genomes with genomes from Boletales, Agaricales, and Polyporales revealed synteny of the A-locus region within Boletales, but several genomic rearrangements across orders. Our findings suggest correlation between gene content at the B-locus region and breeding system in Boletales with tetrapolar species possessing more diverse gene content than bipolar species. Rhizopogon vinicolor possesses a greater number of B-locus pheromone receptor and precursor genes than R. vesiculosus, as well as a pair of isoprenyl cysteine methyltransferase genes flanking the B-locus compared to a single copy in R. vesiculosus Examination of dikaryotic single nucleotide polymorphisms within genomes revealed greater heterozygosity in R. vinicolor, consistent with increased rates of outcrossing. Both species possess the components of a heterothallic breeding system with R. vinicolor possessing a B-locus region structure consistent with tetrapolar Boletales and R. vesiculosus possessing a B-locus region structure intermediate between bipolar and tetrapolar Boletales.


Assuntos
Basidiomycota/genética , Genes Fúngicos Tipo Acasalamento , Genoma Fúngico , Genômica , Micorrizas/genética , Basidiomycota/classificação , Mapeamento Cromossômico , Biologia Computacional/métodos , Estudo de Associação Genômica Ampla , Genômica/métodos , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Mutação , Micorrizas/classificação , Filogenia , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Característica Quantitativa Herdável , Sintenia
7.
Genome Announc ; 4(5)2016 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-27634999

RESUMO

We report here the first genome sequence of the white-rot fungus Obba rivulosa (Polyporales, Basidiomycota), a polypore known for its lignin-decomposing ability. The genome is based on the homokaryon 3A-2 originating in Finland. The genome is typical in size and carbohydrate active enzyme (CAZy) content for wood-decomposing basidiomycetes.

8.
IMA Fungus ; 5(1): 121-34, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25083412

RESUMO

Ophiocordycipitaceae is a diverse family comprising ecologically, economically, medicinally, and culturally important fungi. The family was recognized due to the polyphyly of the genus Cordyceps and the broad diversity of the mostly arthropod-pathogenic lineages of Hypocreales. The other two cordyceps-like families, Cordycipitaceae and Clavicipitaceae, will be revised taxonomically elsewhere. Historically, many species were placed in Cordyceps, but other genera have been described in this family as well, including several based on anamorphic features. Currently there are 24 generic names in use across both asexual and sexual life stages for species of Ophiocordycipitaceae. To reflect changes in Art. 59 in the International Code of Nomenclature for algae, fungi, and plants (ICN), we propose to protect and to suppress names within Ophiocordycipitaceae, and to present taxonomic revisions in the genus Tolypocladium, based on rigorous and extensively sampled molecular phylogenetic analyses. When approaching this task, we considered the principles of priority, monophyly, minimizing taxonomic revisions, and the practical utility of these fungi within the wider biological research community.

9.
Mycologia ; 105(6): 1339-49, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23928422

RESUMO

Genome-enabled mycology is a rapidly expanding field that is characterized by the pervasive use of genome-scale data and associated computational tools in all aspects of fungal biology. Genome-enabled mycology is integrative and often requires teams of researchers with diverse skills in organismal mycology, bioinformatics and molecular biology. This issue of Mycologia presents the first complete fungal genomes in the history of the journal, reflecting the ongoing transformation of mycology into a genome-enabled science. Here, we consider the prospects for genome-enabled mycology and the technical and social challenges that will need to be overcome to grow the database of complete fungal genomes and enable all fungal biologists to make use of the new data.


Assuntos
Fungos/genética , Genoma Fúngico , Bases de Dados Genéticas , Fungos/classificação , Micologia , Filogenia
10.
PLoS Pathog ; 8(12): e1003037, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23236275

RESUMO

The class Dothideomycetes is one of the largest groups of fungi with a high level of ecological diversity including many plant pathogens infecting a broad range of hosts. Here, we compare genome features of 18 members of this class, including 6 necrotrophs, 9 (hemi)biotrophs and 3 saprotrophs, to analyze genome structure, evolution, and the diverse strategies of pathogenesis. The Dothideomycetes most likely evolved from a common ancestor more than 280 million years ago. The 18 genome sequences differ dramatically in size due to variation in repetitive content, but show much less variation in number of (core) genes. Gene order appears to have been rearranged mostly within chromosomal boundaries by multiple inversions, in extant genomes frequently demarcated by adjacent simple repeats. Several Dothideomycetes contain one or more gene-poor, transposable element (TE)-rich putatively dispensable chromosomes of unknown function. The 18 Dothideomycetes offer an extensive catalogue of genes involved in cellulose degradation, proteolysis, secondary metabolism, and cysteine-rich small secreted proteins. Ancestors of the two major orders of plant pathogens in the Dothideomycetes, the Capnodiales and Pleosporales, may have had different modes of pathogenesis, with the former having fewer of these genes than the latter. Many of these genes are enriched in proximity to transposable elements, suggesting faster evolution because of the effects of repeat induced point (RIP) mutations. A syntenic block of genes, including oxidoreductases, is conserved in most Dothideomycetes and upregulated during infection in L. maculans, suggesting a possible function in response to oxidative stress.


Assuntos
Ascomicetos/genética , Ascomicetos/patogenicidade , Cromossomos Fúngicos/genética , Evolução Molecular , Genes Fúngicos/fisiologia , Doenças das Plantas/genética , Ascomicetos/metabolismo , Cromossomos Fúngicos/metabolismo , Elementos de DNA Transponíveis/fisiologia , Estresse Oxidativo/genética , Doenças das Plantas/microbiologia , Mutação Puntual
11.
Mycologia ; 104(2): 462-76, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22075787

RESUMO

Molecular phylogenetic analyses indicate that the monophyletic classes Orbiliomycetes and Pezizomycetes are among the earliest diverging branches of Pezizomycotina, the largest subphylum of the Ascomycota. Although Orbiliomycetes is resolved as the most basal lineage in some analyses, molecular support for the node resolving the relationships between the two classes is low and topologies are unstable. We provide ultrastructural evidence to inform the placement of Orbiliomycetes by studying an Orbilia, a member of the only order (Orbiliales) of the class. The truncate ascus apex in the Orbilia is thin-walled except at the margin, and an irregular wall rupture of the apex permits ascospore discharge. Ascus, ascogenous and non-ascogenous hyphae were simple septate, with septal pores plugged by unelaborated electron-dense, non-membranous occlusions. Globose Woronin bodies were located on both sides of the septum. Nuclear division was characterized by the retention of an intact nuclear envelope, and a two-layered disk-shaped spindle pole body. The less differentiated nature of the spore discharge apparatus and septal pore organization supports an earliest diverging position of Orbiliomycetes within the subphylum, while the closed nuclear division and disk-shaped spindle pole body are interpreted as ancestral state characters for Ascomycota.


Assuntos
Ascomicetos/classificação , Ascomicetos/ultraestrutura , Evolução Biológica , Filogenia , Ascomicetos/genética , Sequência de Bases , DNA Fúngico/química , DNA Fúngico/genética , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , Microscopia Eletrônica de Transmissão , Minnesota , Dados de Sequência Molecular , Análise de Sequência de DNA , Esporos Fúngicos/ultraestrutura
12.
Mycol Res ; 113(Pt 4): 461-79, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19422072

RESUMO

We present a molecular phylogenetic analysis for two families within the Pleosporomycetidae (Dothideomycetes), the Hysteriaceae, and the Mytilinidiaceae, using four nuclear genes, the ribosomal LSU and SSU, transcription elongation factor 1 alpha and the second largest RNA polymerase II subunit. Multigene phylogenies provide strong support for the monophyly of the Hysteriaceae and of the Mytilinidiaceae, both within the Pleosporomycetidae. However, sequence data also indicate that both families are not closely related within the subclass. Although core groups for many of the genera in the Hysteriaceae have been defined, Hysterium, Gloniopsis, and Hysterographium are polyphyletic, with affinities not premised on spore septation and pigmentation. Glonium is also polyphyletic, but along two highly divergent lines. The genus lies outside of the Hysteriaceae, and finds close affinities instead with the family Mytilinidiaceae, for which we propose Gloniaceae fam. nov. to accommodate the type, G. stellatum and related forms. The genus Psiloglonium is reinstated within the Hysteriaceae, with P. lineare, as type, to accommodate non-subiculate species, with apically obtuse didymospores. Farlowiella is removed from the Hysteriaceae, but remains within the Pleosporomycetidae. In contrast, despite divergent spore morphologies, the genera Mytilinidion and Lophium form a strongly supported clade, thus defining a highly monophyletic Mytilinidiaceae, adjacent to the Gloniaceae, for which we propose the Mytilinidiales ord. nov. The genus Ostreichnion, previously in the Mytilinidiaceae, is here transferred to the Hysteriaceae. It is concluded that the evolution of the hysterothecium occurred multiple times within the Pleosporomycetidae, and alone it is not a synapomorphic character state for the Hysteriaceae.


Assuntos
Ascomicetos/classificação , DNA Mitocondrial/genética , Evolução Molecular , Proteínas Fúngicas/genética , RNA Polimerase II/genética , Subunidades Ribossômicas/genética , Fatores de Elongação da Transcrição/genética , Ascomicetos/genética , DNA Fúngico/genética , DNA Ribossômico/genética , Dados de Sequência Molecular , Filogenia
13.
Stud Mycol ; 57: 5-59, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-18490993

RESUMO

Cordyceps, comprising over 400 species, was historically classified in the Clavicipitaceae, based on cylindrical asci, thickened ascus apices and filiform ascospores, which often disarticulate into part-spores. Cordyceps was characterized by the production of well-developed often stipitate stromata and an ecology as a pathogen of arthropods and Elaphomyces with infrageneric classifications emphasizing arrangement of perithecia, ascospore morphology and host affiliation. To refine the classification of Cordyceps and the Clavicipitaceae, the phylogenetic relationships of 162 taxa were estimated based on analyses consisting of five to seven loci, including the nuclear ribosomal small and large subunits (nrSSU and nrLSU), the elongation factor 1alpha (tef1), the largest and the second largest subunits of RNA polymerase II (rpb1 and rpb2), beta-tubulin (tub), and mitochondrial ATP6 (atp6). Our results strongly support the existence of three clavicipitaceous clades and reject the monophyly of both Cordyceps and Clavicipitaceae. Most diagnostic characters used in current classifications of Cordyceps (e.g., arrangement of perithecia, ascospore fragmentation, etc.) were not supported as being phylogenetically informative; the characters that were most consistent with the phylogeny were texture, pigmentation and morphology of stromata. Therefore, we revise the taxonomy of Cordyceps and the Clavicipitaceae to be consistent with the multi-gene phylogeny. The family Cordycipitaceae is validated based on the type of Cordyceps, C. militaris, and includes most Cordyceps species that possess brightly coloured, fleshy stromata. The new family Ophiocordycipitaceae is proposed based on Ophiocordyceps Petch, which we emend. The majority of species in this family produce darkly pigmented, tough to pliant stromata that often possess aperithecial apices. The new genus Elaphocordyceps is proposed for a subclade of the Ophiocordycipitaceae, which includes all species of Cordyceps that parasitize the fungal genus Elaphomyces and some closely related species that parasitize arthropods. The family Clavicipitaceaes. s. is emended and includes the core clade of grass symbionts (e.g., Balansia, Claviceps, Epichloë, etc.), and the entomopathogenic genus Hypocrella and relatives. In addition, the new genus Metacordyceps is proposed for Cordyceps species that are closely related to the grass symbionts in the Clavicipitaceaes. s.Metacordyceps includes teleomorphs linked to Metarhizium and other closely related anamorphs. Two new species are described, and lists of accepted names for species in Cordyceps, Elaphocordyceps, Metacordyceps and Ophiocordyceps are provided.

14.
J Mol Evol ; 63(1): 95-107, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16770683

RESUMO

Key insight into the complexities of apoptosis may be gained from the study of its evolution in lower metazoans. In this study we describe two genes from a cnidarian, Aiptasia pallida, that are homologous to key genes in the apoptotic pathway from vertebrates. The first is a novel ancient caspase, acasp, that displays attributes of both initiator and executioner caspases and includes a caspase recruitment domain (CARD). The second, a Bcl-2 family member, abhp, contains a BH1 and BH2 domain and shares structural characteristics and phylogenetic affinity with a group of antiapoptotic Bcl-2s including A1 and Bcl-2L10. The breadth of occurrence of other invertebrate homologues across the phylogenetic trees of both genes suggests that the complexity of apoptotic pathways is an ancient trait that predates the evolution of vertebrates and higher invertebrates such as nematodes and flies. This paves the way for establishing new lower metazoan model systems for the study of apoptosis.


Assuntos
Apoptose/genética , Evolução Biológica , Caspases/genética , Genes bcl-2 , Anêmonas-do-Mar/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Caspases/metabolismo , Sequência Conservada , Modelos Animais , Dados de Sequência Molecular , Família Multigênica , Filogenia , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Homologia de Sequência do Ácido Nucleico
15.
Mycologia ; 98(6): 1018-28, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17486977

RESUMO

Pezizomycotina is the largest subphylum of Ascomycota and includes the vast majority of filamentous, ascoma-producing species. Here we report the results from weighted parsimony, maximum likelihood and Bayesian phylogenetic analyses of five nuclear loci (SSU rDNA, LSU rDNA, RPB1, RPB2 and EF-lalpha) from 191 taxa. Nine of the 10 Pezizomycotina classes currently recognized were represented in the sampling. These data strongly supported the monophyly of Pezizomycotina, Arthoniomycetes, Eurotiomycetes, Orbiliomycetes and Sordariomycetes. Pezizomycetes and Dothideomycetes also were resolved as monophyletic but not strongly supported by the data. Lecanoromycetes was resolved as paraphyletic in parsimony analyses but monophyletic in maximum likelihood and Bayesian analyses. Leotiomycetes was polyphyletic due to exclusion of Geoglossaceae. The two most basal classes of Pezizomycotina were Orbiliomycetes and Pezizomycetes, both of which comprise species that produce apothecial ascomata. The seven remaining classes formed a monophyletic group that corresponds to Leotiomyceta. Within Leotiomyceta, the supraclass clades of Leotiomycetes s.s. plus Sordariomycetes and Arthoniomycetes plus Dothideomycetes were resolved with moderate support.


Assuntos
Ascomicetos/classificação , Ascomicetos/genética , Filogenia , Ascomicetos/ultraestrutura , Análise por Conglomerados , Biologia Computacional , DNA Fúngico/genética , DNA Ribossômico/genética , Microscopia Eletrônica de Varredura , Fator 1 de Elongação de Peptídeos/genética , RNA Polimerase II/genética , RNA Ribossômico 18S/genética , RNA Ribossômico 28S/genética , Homologia de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA