Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Neurobiol Stress ; 25: 100556, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37521513

RESUMO

High childhood emotional maltreatment (CM-EMO) is reported in mood and anxiety disorders. The associations with an increased risk for psychopathology are not fully understood. One potential factor may be through alterations in gamma-Aminobutyric acid (GABA). The pregenual anterior cingulate cortex (pgACC) is an important brain region for emotion processing and its' GABA levels were previously implicated in mood and anxiety disorders pathophysiology. We examined the association between the self-reported CM-EMO in adulthood and GABA + levels in the pgACC and in a control region, anterior mid cingulate cortex. GABA+ and total creatine (tCr) were measured in the pgACC and aMCC voxels in seventy-four healthy volunteers (32 (43%) women, ages 19-54, age [standard deviation] = 27.1 [6.5]) using proton magnetic resonance spectroscopy at 7 T. Childhood Trauma Questionnaire was completed by adult participants to measure retrospective self-reported experience of emotional neglect (CM-EMO-NEG) and emotional abuse (CM-EMO-AB) during childhood. Linear mixed models tested the interaction between the region and the two subscales, and GABA+/tCr ratios, with an adjusted alpha = 0.025. Following, linear models, including with covariates were tested. There was an interaction effect between region and CM-EMO-NEG (B = -0.007, p = 0.009), driven by a negative relationship between CM-EMO-NEG and GABA+/tCr in the pgACC (B = -0.004, p = 0.013). Results for CM-EMO-NEG were robust to inclusion of different covariates (ps < 0.035). There was no interaction effect for the CM-EMO-AB (B = 0.007, p = 0.4). Limitations include cross-sectional measurement and retrospective nature of the CTQ. The findings indicate preliminary importance of inhibitory neurometabolite concentrations in the pgACC for retrospective reporting of CM-EMO-NEG.

2.
Comput Biol Med ; 149: 106093, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36116318

RESUMO

Expert interpretation of anatomical images of the human brain is the central part of neuroradiology. Several machine learning-based techniques have been proposed to assist in the analysis process. However, the ML models typically need to be trained to perform a specific task, e.g., brain tumour segmentation or classification. Not only do the corresponding training data require laborious manual annotations, but a wide variety of abnormalities can be present in a human brain MRI - even more than one simultaneously, which renders a representation of all possible anomalies very challenging. Hence, a possible solution is an unsupervised anomaly detection (UAD) system that can learn a data distribution from an unlabelled dataset of healthy subjects and then be applied to detect out-of-distribution samples. Such a technique can then be used to detect anomalies - lesions or abnormalities, for example, brain tumours, without explicitly training the model for that specific pathology. Several Variational Autoencoder (VAE) based techniques have been proposed in the past for this task. Even though they perform very well on controlled artificially simulated anomalies, many of them perform poorly while detecting anomalies in clinical data. This research proposes a compact version of the "context-encoding" VAE (ceVAE) model, combined with pre and post-processing steps, creating a UAD pipeline (StRegA), which is more robust on clinical data and shows its applicability in detecting anomalies such as tumours in brain MRIs. The proposed pipeline achieved a Dice score of 0.642 ± 0.101 while detecting tumours in T2w images of the BraTS dataset and 0.859 ± 0.112 while detecting artificially induced anomalies, while the best performing baseline achieved 0.522 ± 0.135 and 0.783 ± 0.111, respectively.


Assuntos
Neoplasias Encefálicas , Processamento de Imagem Assistida por Computador , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Neuroimagem
3.
Magn Reson Med ; 88(6): 2645-2661, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35906923

RESUMO

PURPOSE: To present electromagnetic simulation setups for detailed analyses of respiration's impact on B 1 + $$ {B}_1^{+} $$ and E-fields, local specific absorption rate (SAR) and associated safety-limits for 7T cardiac imaging. METHODS: Finite-difference time-domain electromagnetic field simulations were performed at five respiratory states using a breathing body model and a 16-element 7T body transceiver RF-coil array. B 1 + $$ {B}_1^{+} $$ and SAR are analyzed for fixed and moving coil configurations. SAR variations are investigated using phase/amplitude shimming considering (i) a local SAR-controlled mode (here SAR calculations consider RF amplitudes and phases) and (ii) a channel-wise power-controlled mode (SAR boundary calculation is independent of the channels' phases, only dependent on the channels' maximum amplitude). RESULTS: Respiration-induced variations of both B 1 + $$ {B}_1^{+} $$ amplitude and phase are observed. The flip angle homogeneity depends on the respiratory state used for B 1 + $$ {B}_1^{+} $$ shimming; best results were achieved for shimming on inhale and exhale simultaneously ( | Δ C V | < 35 % $$ \mid \Delta CV\mid <35\% $$ ). The results reflect that respiration impacts position and amplitude of the local SAR maximum. With the local-SAR-control mode, a safety factor of up to 1.4 is needed to accommodate for respiratory variations while the power control mode appears respiration-robust when the coil moves with respiration (SAR peak decrease: 9% exhale→inhale). Instead, a spatially fixed coil setup yields higher SAR variations with respiration. CONCLUSION: Respiratory motion does not only affect the B 1 + $$ {B}_1^{+} $$ distribution and hence the image contrast, but also location and magnitude of the peak spatial SAR. Therefore, respiration effects may need to be included in safety analyses of RF coils applied to the human thorax.


Assuntos
Campos Eletromagnéticos , Imageamento por Ressonância Magnética , Simulação por Computador , Humanos , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Ondas de Rádio
4.
Brain ; 145(4): 1473-1485, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35352105

RESUMO

We investigated whether the impact of tau-pathology on memory performance and on hippocampal/medial temporal memory function in non-demented individuals depends on the presence of amyloid pathology, irrespective of diagnostic clinical stage. We conducted a cross-sectional analysis of the observational, multicentric DZNE-Longitudinal Cognitive Impairment and Dementia Study (DELCODE). Two hundred and thirty-five participants completed task functional MRI and provided CSF (92 cognitively unimpaired, 100 experiencing subjective cognitive decline and 43 with mild cognitive impairment). Presence (A+) and absence (A-) of amyloid pathology was defined by CSF amyloid-ß42 (Aß42) levels. Free recall performance in the Free and Cued Selective Reminding Test, scene recognition memory accuracy and hippocampal/medial temporal functional MRI novelty responses to scene images were related to CSF total-tau and phospho-tau levels separately for A+ and A- individuals. We found that total-tau and phospho-tau levels were negatively associated with memory performance in both tasks and with novelty responses in the hippocampus and amygdala, in interaction with Aß42 levels. Subgroup analyses showed that these relationships were only present in A+ and remained stable when very high levels of tau (>700 pg/ml) and phospho-tau (>100 pg/ml) were excluded. These relationships were significant with diagnosis, age, education, sex, assessment site and Aß42 levels as covariates. They also remained significant after propensity score based matching of phospho-tau levels across A+ and A- groups. After classifying this matched sample for phospho-tau pathology (T-/T+), individuals with A+/T+ were significantly more memory-impaired than A-/T+ despite the fact that both groups had the same amount of phospho-tau pathology. ApoE status (presence of the E4 allele), a known genetic risk factor for Alzheimer's disease, did not mediate the relationship between tau pathology and hippocampal function and memory performance. Thus, our data show that the presence of amyloid pathology is associated with a linear relationship between tau pathology, hippocampal dysfunction and memory impairment, although the actual severity of amyloid pathology is uncorrelated. Our data therefore indicate that the presence of amyloid pathology provides a permissive state for tau-related hippocampal dysfunction and hippocampus-dependent recognition and recall impairment. This raises the possibility that in the predementia stage of Alzheimer's disease, removing the negative impact of amyloid pathology could improve memory and hippocampal function even if the amount of tau-pathology in CSF is not changed, whereas reducing increased CSF tau-pathology in amyloid-negative individuals may not proportionally improve memory function.


Assuntos
Doença de Alzheimer , Amiloidose , Disfunção Cognitiva , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Proteínas Amiloidogênicas , Apolipoproteínas E/genética , Biomarcadores , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/genética , Estudos Transversais , Hipocampo/metabolismo , Humanos , Proteínas tau/metabolismo
5.
Sci Rep ; 12(1): 1505, 2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-35087174

RESUMO

A brain tumour is a mass or cluster of abnormal cells in the brain, which has the possibility of becoming life-threatening because of its ability to invade neighbouring tissues and also form metastases. An accurate diagnosis is essential for successful treatment planning, and magnetic resonance imaging is the principal imaging modality for diagnosing brain tumours and their extent. Deep Learning methods in computer vision applications have shown significant improvement in recent years, most of which can be credited to the fact that a sizeable amount of data is available to train models, and the improvements in the model architectures yield better approximations in a supervised setting. Classifying tumours using such deep learning methods has made significant progress with the availability of open datasets with reliable annotations. Typically those methods are either 3D models, which use 3D volumetric MRIs or even 2D models considering each slice separately. However, by treating one spatial dimension separately or by considering the slices as a sequence of images over time, spatiotemporal models can be employed as "spatiospatial" models for this task. These models have the capabilities of learning specific spatial and temporal relationships while reducing computational costs. This paper uses two spatiotemporal models, ResNet (2+1)D and ResNet Mixed Convolution, to classify different types of brain tumours. It was observed that both these models performed superior to the pure 3D convolutional model, ResNet18. Furthermore, it was also observed that pre-training the models on a different, even unrelated dataset before training them for the task of tumour classification improves the performance. Finally, Pre-trained ResNet Mixed Convolution was observed to be the best model in these experiments, achieving a macro F1-score of 0.9345 and a test accuracy of 96.98%, while at the same time being the model with the least computational cost.


Assuntos
Imageamento por Ressonância Magnética
6.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 1419-1422, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34891551

RESUMO

Magnetic Resonance Imaging (MRI) guided Microwave Ablation (MWA) allows for real-time therapy monitoring with MRI-thermometry. The MWA generator emits Radio Frequency (RF) interference, which can limit the accuracy of therapy monitoring. The image quality is enhanced by Floating Cable Traps (FCTs) that are used to attenuate common mode currents on supply lines between a MWA generator, and its ablation applicator. The effect of an FCT on the Signal to Noise Ratio (SNR), and changes in the MRI spectrum are discussed in this paper. The application of FCT can bring significant improvements in both, the MRI spectrum and the SNR.Floating Cable Traps are user-friendly. FCT enable coaxial cables to reduce interferences emitted in MRI guided interventions. It is used to selectively attenuate frequencies in the MRI's range. This can increase the image's Signal to Noise Ratio.


Assuntos
Micro-Ondas , Termometria , Imageamento por Ressonância Magnética , Impressão Tridimensional , Razão Sinal-Ruído
7.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 1457-1461, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34891560

RESUMO

Irreversible electroporation (IRE) is a non-thermal tumor ablation method where strong electrical fields between at least two electrodes are used and can be seen as an alternative to thermal ablation techniques. The therapy outcome directly dependents on the position of the electrodes. Real-time monitoring of the IRE by magnetic resonance imaging (MRI) would allow to detect unwanted electrode displacement and to apply visualization methods for the ablation area. This requires that the IRE generator does not significantly interfere with the MRI. Currently, there is no IRE generator available designed for MRI-guided IRE.This paper presents an IRE system specifically developed for use in an MRI environment. The system is initially tested with a standard IRE sequence and then the interference between a clinical 3 T MRI device and the IRE system is investigated using a noise measurement and the signal-to-noise ratio (SNR) of images acquired with a gradient echo (GRE) sequence. The results show, that although the SNR of the images decrease by maximal 36 % when the IRE system is switched on, image quality does not visibly degrade. Hence, MRI-guided IRE is feasible with the proposed system.Clinical relevance- This paper demonstrates the possibility of MRI-guided IRE with only minor image degradation when the IRE system is used in parallel with MRI imaging.


Assuntos
Técnicas de Ablação , Eletroporação , Eletrodos , Imageamento por Ressonância Magnética
8.
Med Image Anal ; 69: 101950, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33421920

RESUMO

Segmentation of abdominal organs has been a comprehensive, yet unresolved, research field for many years. In the last decade, intensive developments in deep learning (DL) introduced new state-of-the-art segmentation systems. Despite outperforming the overall accuracy of existing systems, the effects of DL model properties and parameters on the performance are hard to interpret. This makes comparative analysis a necessary tool towards interpretable studies and systems. Moreover, the performance of DL for emerging learning approaches such as cross-modality and multi-modal semantic segmentation tasks has been rarely discussed. In order to expand the knowledge on these topics, the CHAOS - Combined (CT-MR) Healthy Abdominal Organ Segmentation challenge was organized in conjunction with the IEEE International Symposium on Biomedical Imaging (ISBI), 2019, in Venice, Italy. Abdominal organ segmentation from routine acquisitions plays an important role in several clinical applications, such as pre-surgical planning or morphological and volumetric follow-ups for various diseases. These applications require a certain level of performance on a diverse set of metrics such as maximum symmetric surface distance (MSSD) to determine surgical error-margin or overlap errors for tracking size and shape differences. Previous abdomen related challenges are mainly focused on tumor/lesion detection and/or classification with a single modality. Conversely, CHAOS provides both abdominal CT and MR data from healthy subjects for single and multiple abdominal organ segmentation. Five different but complementary tasks were designed to analyze the capabilities of participating approaches from multiple perspectives. The results were investigated thoroughly, compared with manual annotations and interactive methods. The analysis shows that the performance of DL models for single modality (CT / MR) can show reliable volumetric analysis performance (DICE: 0.98 ± 0.00 / 0.95 ± 0.01), but the best MSSD performance remains limited (21.89 ± 13.94 / 20.85 ± 10.63 mm). The performances of participating models decrease dramatically for cross-modality tasks both for the liver (DICE: 0.88 ± 0.15 MSSD: 36.33 ± 21.97 mm). Despite contrary examples on different applications, multi-tasking DL models designed to segment all organs are observed to perform worse compared to organ-specific ones (performance drop around 5%). Nevertheless, some of the successful models show better performance with their multi-organ versions. We conclude that the exploration of those pros and cons in both single vs multi-organ and cross-modality segmentations is poised to have an impact on further research for developing effective algorithms that would support real-world clinical applications. Finally, having more than 1500 participants and receiving more than 550 submissions, another important contribution of this study is the analysis on shortcomings of challenge organizations such as the effects of multiple submissions and peeking phenomenon.


Assuntos
Algoritmos , Tomografia Computadorizada por Raios X , Abdome/diagnóstico por imagem , Humanos , Fígado
9.
Invest Radiol ; 53(7): 390-396, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29521888

RESUMO

OBJECTIVES: The aim of this study was to compare the assessment of low-grade meniscal tears and cartilage damage in ultrahigh-field magnetic resonance imaging (MRI) at 7 T to routine clinical MRI at 3 T. MATERIALS AND METHODS: This study was approved by the local ethics committee, and written informed consent was obtained from each patient. Forty-one patients with suspected meniscal damage or mild osteoarthritis (Kellgren-Lawrence score, 0-2) received 7 T as well as routine clinical 3 T consecutively. The imaging protocol at both field strengths consisted of PD-weighted imaging with more than doubled resolution at 7 T. Images were read blinded regarding field strength and patient characteristics by 3 readers with different experience in musculoskeletal MRI (3 years, 6 years, and 10 years) according to a modified whole-organ MRI score of the knee in osteoarthritis and the Score of the International Cartilage Repair Society. Arthroscopic reports as a criterion standard were available for 12 patients. A multifactorial mixed model analysis was performed. RESULTS: The mean cumulated diagnostic score at 7 T was significantly closer to the criterion standard compared with 3 T in patients where criterion standard was available (P < 0.001). In all 41 patients, the damages were rated more severely at 7 T reflected by a mean higher cumulative score in cartilage (P < 0.001) and in the meniscus (P < 0.001). No difference in interreader variability between 3 T and 7 T was observed. Imaging acquisition time was nearly identical. CONCLUSIONS: Morphologic imaging of cartilage and meniscal damage of the knee in ultrahigh-field MRI at 7 T with PD-weighted TSE sequences seemed to have a significantly higher diagnostic accuracy than 3 T and can be performed with equal acquisition times while exploiting higher resolution of 7 T.


Assuntos
Artroscopia/métodos , Traumatismos do Joelho/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Menisco/diagnóstico por imagem , Menisco/lesões , Osteoartrite do Joelho/diagnóstico por imagem , Adulto , Idoso , Feminino , Humanos , Articulação do Joelho/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Adulto Jovem
10.
Top Magn Reson Imaging ; 27(1): 53-61, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29406416

RESUMO

The unique ability of magnetic resonance imaging to measure temperature noninvasively, in vivo, makes it an attractive tool for monitoring interventional procedures, such as radiofrequency or microwave ablation in real-time. The most frequently used approach for magnetic resonance-based temperature measurement is proton resonance frequency (PRF) thermometry. Although it has many advantages, including tissue-independence and real-time capability, the main drawback is its motion sensitivity. This is likely the reason PRF thermometry in moving organs, such as the liver, is not commonly used in the clinical arena. In recent years, however, several developments suggest that motion-corrected thermometry in the liver is achievable. The present article summarizes the diverse attempts to correct thermometry in the liver. Therefore, the physical principle of PRF is introduced, with additional references for necrosis zone estimation and how to deal with fat phase modulation, and main magnetic field drifts. The primary categories of motion correction are presented, including general methods for motion compensation and library-based approaches, and referenceless thermometry and hybrid methods. Practical validation of the described methods in larger patient groups will be necessary to establish accurate motion-corrected thermometry in the clinical arena, with the goal of complete liver tumor ablation.


Assuntos
Fígado/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Prótons , Termometria/métodos , Humanos , Imagens de Fantasmas , Temperatura
11.
Graefes Arch Clin Exp Ophthalmol ; 254(6): 1111-6, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27072357

RESUMO

OBJECTIVES: To assess the detectability of vasculitic changes of the superficial cranial arteries with contrast-enhanced 7 T MRI in three patients with GCA and intraindividual comparison with 3 T MRI. METHODS: Three patients (two female, one male) with suspected GCA underwent contrast-enhanced T1-weighted high-resolution MRI at 3 T and 7 T magnetic field strength. The clinical diagnosis, based on criteria of the American College of Rheumatology, was confirmed by biopsy of the superficial temporal artery after MRI. MR images were visually assessed for detection of vasculitic mural contrast enhancement and vessel wall thickening of the superficial cranial arteries. RESULTS: Both 3 T and 7 T MRI allows for visualisation of mural inflammatory changes and assessment of the vasculitic involvement pattern. Image quality of 7 T MRI was rated superior to image quality of 3 T MRI scans. CONCLUSIONS: 7 T MR imaging of vasculitic changes in patients with GCA is possible, and suggests superior image quality. Larger patient studies are necessary to quantify the diagnostic advantages of 7 T MRI.


Assuntos
Arterite de Células Gigantes/diagnóstico por imagem , Imageamento por Ressonância Magnética , Artérias Temporais/diagnóstico por imagem , Idoso , Idoso de 80 Anos ou mais , Biópsia , Sedimentação Sanguínea , Estudos de Viabilidade , Feminino , Arterite de Células Gigantes/tratamento farmacológico , Arterite de Células Gigantes/patologia , Glucocorticoides/uso terapêutico , Humanos , Masculino , Artérias Temporais/efeitos dos fármacos , Artérias Temporais/patologia
12.
Neuroimage ; 133: 288-293, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26994830

RESUMO

PURPOSE: To examine the extent of genetic damage, assessed from deoxyribonucleic acid (DNA) double-strand breaks (DSBs) and micronuclei (MN) in peripheral blood mononuclear cells obtained from individuals repeatedly exposed to 7T Magnetic Resonance Imaging (MRI). MATERIALS AND METHODS: The study protocol was approved by the local ethics committee. Informed consent was obtained from 22 healthy, non-smoking, non-alcoholic male individuals, who had never undergone radio-/chemo-therapy, scintigraphy, and had not undergone X-ray examination one year prior blood withdrawal. Eleven participants were repeatedly exposed to 7T and 3T MRI while working with/around scanners or frequently participating as 7T and lower field MRI research subjects (mean age 34±7years). The other half was never exposed to 7T or lower field MRI and served as controls (mean age 33±9years). The damage in lymphocytes was assessed using anti-γH2AX immunofluorescence staining of DNA DSBs and by quantification of MN. Isolated cells were further exposed in vitro to 7T MRI either alone or in the presence of the DNA damaging drug etoposide, to determine if there is any additional combined effect. The kinetics of DNA damage repair were examined. RESULTS: The mean base-level of γH2AX foci/cell and incidence of MN between repeatedly exposed and control group were not significantly different (P=0.618 and P=0.535, respectively). The additional in vitro exposure of cells to 7T MRI had no significant impact on MN frequencies and γH2AX foci at 1, 20 and 72h after exposure. CONCLUSION: Frequently repeated 7T MRI exposure did not result in a detectable increase in genotoxicity indices and alterations of DNA repair kinetics.


Assuntos
DNA/efeitos da radiação , Linfócitos/efeitos da radiação , Imageamento por Ressonância Magnética/efeitos adversos , Micronúcleos com Defeito Cromossômico/efeitos da radiação , Irradiação Corporal Total/efeitos adversos , Adulto , Células Cultivadas , DNA/genética , Dano ao DNA , Relação Dose-Resposta à Radiação , Humanos , Linfócitos/patologia , Testes para Micronúcleos , Doses de Radiação , Irradiação Corporal Total/métodos
13.
Quant Imaging Med Surg ; 5(3): 344-55, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26029637

RESUMO

BACKGROUND: In this work, two-dimensional (2D) spatially selective magnetic resonance spectroscopy (MRS) was evaluated in both phantom and human brain using 8-channel parallel excitation (pTX) at 7 T and compared to standard STEAM. MATERIALS AND METHODS: A 2D spiral excitation k-space trajectory was segmented into multiple individual segments to increase the bandwidth. pTX was used to decrease the number of segments by accelerating the trajectory. Different radio frequency (RF) shim settings were used for refocusing, water suppression and fat saturation pulses. RESULTS: Phantom experiments demonstrate that, although segmented 2D excitation provided excellent spatial selectivity and spectral quality, STEAM outperformed it in terms of outer volume suppression with 0.6% RMSD compared to 1.7%, 2.5%, 3.9% and 5.5% RMSDs for acceleration factors of R=1, 2, 3 and 4, respectively. Seven major metabolites [choline (Cho), creatine (Cr), phosphocreatine (PCr), glutamate (Glu), glutamine (Gln), glutathione (GSH) and N-acetylaspartate (NAA)] were detected with sufficient accuracy [Cramér-Rao lower bounds (CRLBs) <20%] from the in vivo spectra of both methods. Conservative RF power limits resulted in reduced SNR for 2D selective MR spectra (SNR 131 and 82 for R=1 and 2, respectively) compared to the reference STEAM spectrum (SNR 199). CONCLUSIONS: Single voxel spectra acquired using 2D selective MRS with and without pTX showed very good agreement with the reference STEAM spectrum. Efficient SAR management of the 2D selective MRS sequence would potentially improve the SNR of spectra.

14.
Mutat Res Rev Mutat Res ; 764: 51-63, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26041266

RESUMO

Magnetic resonance imaging (MRI) is a powerful, non-invasive diagnostic medical imaging technique widely used to acquire detailed information about anatomy and function of different organs in the body, in both health and disease. It utilizes electromagnetic fields of three different frequency bands: static magnetic field (SMF), time-varying gradient magnetic fields (GMF) in the kHz range and pulsed radiofrequency fields (RF) in the MHz range. There have been some investigations examining the extent of genetic damage following exposure of bacterial and human cells to all three frequency bands of electromagnetic fields, as used during MRI: the rationale for these studies is the well documented evidence of positive correlation between significantly increased genetic damage and carcinogenesis. Overall, the published data were not sufficiently informative and useful because of the small sample size, inappropriate comparison of experimental groups, etc. Besides, when an increased damage was observed in MRI-exposed cells, the fate of such lesions was not further explored from multiple 'down-stream' events. This review provides: (i) information on the basic principles used in MRI technology, (ii) detailed experimental protocols, results and critical comments on the genetic damage investigations thus far conducted using MRI equipment and, (iii) a discussion on several gaps in knowledge in the current scientific literature on MRI. Comprehensive, international, multi-centered collaborative studies, using a common and widely used MRI exposure protocol (cardiac or brain scan) incorporating several genetic/epigenetic damage end-points as well as epidemiological investigations, in large number of individuals/patients are warranted to reduce and perhaps, eliminate uncertainties raised in genetic damage investigations in cells exposed in vitro and in vivo to MRI.


Assuntos
DNA/efeitos da radiação , Imageamento por Ressonância Magnética/efeitos adversos , Bactérias/genética , Bactérias/efeitos da radiação , Dano ao DNA , DNA Bacteriano/efeitos da radiação , Instabilidade Genômica , Humanos , Guias de Prática Clínica como Assunto
15.
Materials (Basel) ; 7(1): 30-43, 2013 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-28788438

RESUMO

Dielectric resonance effects and radio-frequency (RF) power deposition have become challenging issues for magnetic resonance imaging at ultrahigh-field (UHF) strengths. The use of transmit (Tx) coil arrays with independently-driven RF sources using a parallel transmission system is a promising method for alleviating the resulting RF inhomogeneities. In this study, the effect on homogeneity and RF-power when employing a higher number of transmit channels with multi-slice acquisition in vivo at high field strength (7T) is scrutinized. An 8-channel head coil array was driven to emulate circular polarized (CP) and 2-, 4-, and 8-channel independent transmit configurations at 7T. Static RF shimming was employed on human subjects in order to homogenize the B1⁺ field in the excited volume. Slice-selective and global RF shimming methods were applied with CP and 2-, 4-, and 8-channel transmit channel configurations. RF shimming was performed from CP to 2-, 4-, and 8-channel Tx configurations globally and slice-selectively. Systematic improvement in B1⁺ homogeneity and/or reduction in RF-power were observed. RF shimming in the human brain with 8-channel transmit and slice-selective shimming yields an increase in B1⁺ homogeneity of 43% and/or reduces RF-power by 68% when compared with CP global RF shimming at 7T.

16.
J Vasc Interv Radiol ; 17(6): 1057-62, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16778242

RESUMO

Lymphoceles that do not resolve spontaneously or with treatment may be a major problem associated with a high degree of morbidity. Several imaging studies, including ultrasonography, computed tomography, magnetic resonance (MR) imaging, lymphography, lymphoscintigraphy, and intraoperative lymphatic mapping have been proposed to delineate lymphoceles before treatment. The present report describes the successful detection of three lymphoceles of the inguinal region with leaking lymphatic vessels by means of high-resolution MR lymphangiography.


Assuntos
Linfocele/diagnóstico , Imageamento por Ressonância Magnética/métodos , Complicações Pós-Operatórias/diagnóstico , Meios de Contraste , Feminino , Gadolínio DTPA , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade
17.
Artigo em Inglês | MEDLINE | ID: mdl-16685881

RESUMO

Subject motion appears to be a limiting factor in numerous magnetic resonance imaging (MRI) applications. For head imaging the subject's ability to maintain the same head position for a considerable period of time places restrictions on the total acquisition time. For healthy individuals this time typically does not exceed 10 minutes and may be considerably reduced in case of pathology. In particular, head tremor, which often accompanies stroke, may render certain high-resolution 2D and 3D techniques inapplicable. Several navigator techniques have been proposed to circumvent the subject motion problem. The most suitable for head imaging appears to be the orbital or spherical navigator methods. Navigators, however, not only lengthen the measurement because of the time required for acquisition of the position information, but also require additional excitation radio frequency (RF) pulses to be incorporated into the sequence timing, which disturbs the steady state. Here we demonstrate the possibility of interfacing the MR scanner with an external optical motion tracking system, capable of determining the object's position with sub-millimeter accuracy and an update rate of 60Hz. The movement information on the object position (head) is used to compensate the motion in real time. This is done by updating the field of view (FOV) by recalculating the gradients and the RF-parameter of the MRI tomograph during the acquisition of k-space data based on the tracking data. Results of rotation phantom, in vivo experiments and the implementation in two different MRI sequences are presented.


Assuntos
Artefatos , Encéfalo/anatomia & histologia , Movimentos da Cabeça , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Humanos , Imageamento por Ressonância Magnética/instrumentação , Imagens de Fantasmas , Ondas de Rádio , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Processamento de Sinais Assistido por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA