Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Expo Sci Environ Epidemiol ; 24(3): 305-10, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24084757

RESUMO

Despite long-standing awareness of adverse health effects associated with chronic human exposure to formaldehyde, this hazardous air pollutant remains a challenge to measure in indoor environments. Traditional analytical techniques evaluate formaldehyde concentrations over several hours to several days in a single location in a residence, making it difficult to characterize daily temporal and spatial variation in human exposure to formaldehyde. There is a need for portable, easy-to-use devices that are specific and sensitive to gas-phase formaldehyde over short sampling periods so that dynamic processes governing formaldehyde fate, transport, and potential remediation in indoor environments may be studied more effectively. A recently developed device couples a chemical sensor element with spectrophotometric analysis for detection and quantification of part per billion (ppbv) gas-phase formaldehyde concentrations. This study established the ability of the coupled sensor-spectrophotometric device (CSSD) to report formaldehyde concentrations accurately and continuously on a 30-min sampling cycle at low ppbv concentrations previously untested for this device in a laboratory setting. Determination of the method detection limit (MDL), based on 40 samples each at test concentrations of 5 and 10 ppbv, was found to be 1.9 and 2.0 ppbv, respectively. Performance of the CSSD was compared with the dinitrophenylhydrazine (DNPH) derivatization method for formaldehyde concentrations ranging from 5-50 ppbv, and a linear relationship with a coefficient of determination of 0.983 was found between these two analytical techniques. The CSSD was also used to monitor indoor formaldehyde concentrations in two manufactured homes. During this time, formaldehyde concentrations varied from below detection limit to 65 ppbv and were above the US National Institute for Occupational Safety and Health (NIOSH) recommended exposure limit (REL) of 16 ppbv, which is also the exposure limit value now adopted by the US Federal Emergency Management Agency (FEMA) to procure manufactured housing, 80% and 100% of the time, respectively.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados , Formaldeído/análise , Espectrofotometria/instrumentação , Limite de Detecção , Espectrofotometria/métodos
2.
Environ Sci Technol ; 45(15): 6498-503, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21736331

RESUMO

Formaldehyde (HCHO) adsorption isotherms were developed for the first time on three activated carbons representing one activated carbon fiber (ACF) cloth, one all-purpose granular activated carbon (GAC), and one GAC commercially promoted for gas-phase HCHO removal. The three activated carbons were evaluated for HCHO removal in the low-ppm(v) range and for water vapor adsorption from relative pressures of 0.1-0.9 at 26 °C where, according to the IUPAC isotherm classification system, the adsorption isotherms observed exhibited Type V behavior. A Type V adsorption isotherm model recently proposed by Qi and LeVan (Q-L) was selected to model the observed adsorption behavior because it reduces to a finite, nonzero limit at low partial pressures and it describes the entire range of adsorption considered in this study. The Q-L model was applied to a polar organic adsorbate to fit HCHO adsorption isotherms for the three activated carbons. The physical and chemical characteristics of the activated carbon surfaces were characterized using nitrogen adsorption isotherms, X-ray photoelectron spectroscopy (XPS), and Boehm titrations. At low concentrations, HCHO adsorption capacity was most strongly related to the density of basic surface functional groups (SFGs), while water vapor adsorption was most strongly influenced by the density of acidic SFGs.


Assuntos
Carvão Vegetal/química , Formaldeído/química , Gases/química , Temperatura , Adsorção , Vapor/análise , Propriedades de Superfície , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA