Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 218
Filtrar
1.
Biol Reprod ; 111(2): 332-350, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38704744

RESUMO

Cows with metritis (uterine disease) during the first 1 to 2 weeks postpartum have lower pregnancy rates when inseminated later postpartum (typically >10 weeks). We hypothesized that metritis and the disease-associated uterine microbiome have a long-term effect on endometrial gene expression. Changes in gene expression may inform a mechanism through which disease lowers pregnancy rates. A total of 20 cows were enrolled at 1 to 2 weeks postpartum to either metritis (clinical disease; n = 10) or healthy (control; n = 10) groups and randomly assigned to be slaughtered at approximately 80 and 165 dpp (mid-lactation). The microbiome of the reproductive tract was sampled to confirm the presence of pathogens that are typical of metritis. In addition to the original clinical diagnosis, study cows were retrospectively assigned to uterine-disease and control groups based on the composition of their microbiome. There was no effect of early postpartum uterine disease on the uterine microbiome at mid-lactation (time of slaughter). Nonetheless, early postpartum metritis and the disease microbiome were associated with a large number of differentially-expressed genes at mid-lactation primarily in the caruncular compared with the inter-caruncular endometrium. Gene enrichment analysis identified oxidative phosphorylation as the primary pathway increased in caruncular endometrium of diseased cows whereas growth factor signaling pathways were reduced. The current study demonstrated that metritis and a uterine disease microbiome leave a sustained imprint on gene expression in the caruncular endometrium that may explain lower fertility in cows with postpartum uterine disease.


Assuntos
Doenças dos Bovinos , Endometrite , Endométrio , Microbiota , Doenças Uterinas , Feminino , Animais , Bovinos , Doenças dos Bovinos/microbiologia , Endométrio/microbiologia , Endométrio/metabolismo , Doenças Uterinas/veterinária , Doenças Uterinas/microbiologia , Endometrite/microbiologia , Endometrite/veterinária , Período Pós-Parto , Gravidez
2.
STAR Protoc ; 5(1): 102894, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38363685

RESUMO

Postnatal development of the uterus involves the specification of undifferentiated epithelium into uterine-type epithelium. That specification is regulated by stromal-epithelial interactions as well as intrinsic cell-specific transcription factors and gene regulatory networks. Here, we present a co-culture system to study the effects of stromal-derived factors on epithelial cell growth and differentiation into organoids. First, we describe epithelial cell isolation and organoid growth characterization. Second, we detail a co-culture system that allows the study of stromal-derived paracrine factors on epithelial development. For complete details on the use and execution of this protocol, please refer to Rizo et al.1.


Assuntos
Células Epiteliais , Células Estromais , Feminino , Humanos , Técnicas de Cocultura , Epitélio , Organoides
3.
Theriogenology ; 218: 26-34, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38295677

RESUMO

In cattle, mating to intact, but not vasectomised, bulls has been shown to modify the endometrial transcriptome, suggesting an important role of sperm in the modulation of the uterine environment in this species. However, it is not clear whether these changes are driven by intrinsic sperm factors, or by factors of accessory gland (AG) origin that bind to sperm at ejaculation. Therefore, the aim of the present study was to determine whether ejaculated sperm, which are suspended in the secretions of the AGs, elicit a different endometrial transcriptomic response than epididymal sperm, which have never been exposed to AG factors. To this end, bovine endometrial explants collected from heifers in oestrus were (co-)incubated for 6 h alone (control), or with epididymal sperm or ejaculated sperm, following which transcriptomic changes in the endometrium were evaluated. Epididymal sperm elicited a more dramatic endometrial response than ejaculated sperm, in terms of the number of differentially expressed genes (DEGs). Indeed, RNA-sequencing data analysis revealed 1912 DEGs in endometrial explants exposed to epididymal sperm compared with control explants, whereas 115 DEGs were detected between endometrial explants exposed to ejaculated sperm in comparison to control explants. The top pathways associated with genes upregulated by epididymal sperm included T cell regulation and TNF, NF-KB and IL17 signalling. Interestingly, ejaculated sperm induced downregulation of genes associated with T cell immunity and Th17 differentiation, and upregulation of genes involved in NF-KB signalling, in comparison to epididymal sperm. These data indicate that factors of AG origin modulate the interaction between sperm and the endometrium in cattle.


Assuntos
Sêmen , Transcriptoma , Bovinos , Animais , Masculino , Feminino , Sêmen/metabolismo , NF-kappa B/metabolismo , Espermatozoides/fisiologia , Epididimo/metabolismo , Endométrio/metabolismo , Perfilação da Expressão Gênica/veterinária , Ejaculação/fisiologia
4.
J Atten Disord ; 28(5): 880-894, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38084074

RESUMO

OBJECTIVE: We offer an overview of ADHD research using mouse models of nicotine exposure. METHOD: Nicotine exposure of C57BL/6 or Swiss Webster mice occurred during prenatal period only or during the prenatal and the pre-weaning periods. Behavioral, neuroanatomical and neurotransmitter assays were used to investigate neurobiological mechanisms of ADHD and discover candidate ADHD medications. RESULTS: Our studies show that norbinaltorphimine, a selective kappa opioid receptor antagonist is a candidate novel non-stimulant ADHD treatment and that a combination of methylphenidate and naltrexone has abuse deterrent potential with therapeutic benefits for ADHD. Other studies showed transgenerational transmission of ADHD-associated behavioral traits and demonstrated that interactions between untreated ADHD and repeated mild traumatic brain injury produced behavioral traits not associated with either condition alone. CONCLUSION: Preclinical models contribute to novel insights into ADHD neurobiology and are valuable tools for drug discovery and translation to benefit humans with ADHD.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Estimulantes do Sistema Nervoso Central , Metilfenidato , Gravidez , Camundongos , Animais , Feminino , Humanos , Transtorno do Deficit de Atenção com Hiperatividade/tratamento farmacológico , Nicotina/uso terapêutico , Neurobiologia , Camundongos Endogâmicos C57BL , Metilfenidato/farmacologia , Metilfenidato/uso terapêutico , Descoberta de Drogas , Estimulantes do Sistema Nervoso Central/farmacologia , Estimulantes do Sistema Nervoso Central/uso terapêutico
5.
iScience ; 26(9): 107568, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37622003

RESUMO

Postnatal development of the uterus involves specification of undifferentiated epithelium into uterine-type epithelium. That specification is regulated by stromal-epithelial interactions as well as intrinsic cell-specific transcription factors and gene regulatory networks. This study utilized mouse genetic models of Esr1 deletion, endometrial epithelial organoids (EEO), and organoid-stromal co-cultures to decipher the role of Esr1 in uterine epithelial development. Organoids derived from wild-type (WT) mice developed a normal single layer of columnar epithelium. In contrast, EEO from Esr1 null mice developed a multilayered stratified squamous type of epithelium with basal cells. Co-culturing Esr1 null epithelium with WT uterine stromal fibroblasts inhibited basal cell development. Of note, estrogen treatment of EEO-stromal co-cultures and Esr1 conditional knockout mice increased basal epithelial cell markers. Collectively, these findings suggest that Esr1 regulates uterine epithelium lineage plasticity and homeostasis and loss of ESR1 promotes altered luminal-to-basal differentiation driven by ESR1-mediated paracrine factors from the stroma.

6.
Eur Respir J ; 61(6)2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37024132

RESUMO

INTRODUCTION: Pulmonary arterial hypertension (PAH) is characterised by loss of microvessels. The Wnt pathways control pulmonary angiogenesis but their role in PAH is incompletely understood. We hypothesised that Wnt activation in pulmonary microvascular endothelial cells (PMVECs) is required for pulmonary angiogenesis, and its loss contributes to PAH. METHODS: Lung tissue and PMVECs from healthy and PAH patients were screened for Wnt production. Global and endothelial-specific Wnt7a -/- mice were generated and exposed to chronic hypoxia and Sugen-hypoxia (SuHx). RESULTS: Healthy PMVECs demonstrated >6-fold Wnt7a expression during angiogenesis that was absent in PAH PMVECs and lungs. Wnt7a expression correlated with the formation of tip cells, a migratory endothelial phenotype critical for angiogenesis. PAH PMVECs demonstrated reduced vascular endothelial growth factor (VEGF)-induced tip cell formation as evidenced by reduced filopodia formation and motility, which was partially rescued by recombinant Wnt7a. We discovered that Wnt7a promotes VEGF signalling by facilitating Y1175 tyrosine phosphorylation in vascular endothelial growth factor receptor 2 (VEGFR2) through receptor tyrosine kinase-like orphan receptor 2 (ROR2), a Wnt-specific receptor. We found that ROR2 knockdown mimics Wnt7a insufficiency and prevents recovery of tip cell formation with Wnt7a stimulation. While there was no difference between wild-type and endothelial-specific Wnt7a -/- mice under either chronic hypoxia or SuHx, global Wnt7a +/- mice in hypoxia demonstrated higher pulmonary pressures and severe right ventricular and lung vascular remodelling. Similar to PAH, Wnt7a +/- PMVECs exhibited an insufficient angiogenic response to VEGF-A that improved with Wnt7a. CONCLUSIONS: Wnt7a promotes VEGF signalling in lung PMVECs and its loss is associated with an insufficient VEGF-A angiogenic response. We propose that Wnt7a deficiency contributes to progressive small vessel loss in PAH.


Assuntos
Hipertensão Arterial Pulmonar , Camundongos , Animais , Hipertensão Arterial Pulmonar/complicações , Fator A de Crescimento do Endotélio Vascular/metabolismo , Células Endoteliais/metabolismo , Hipertensão Pulmonar Primária Familiar/metabolismo , Hipóxia/metabolismo
7.
Mol Hum Reprod ; 29(4)2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36821428

RESUMO

Uterine glands and, by inference, their secretions impact uterine receptivity, blastocyst implantation, stromal cell decidualization, and placental development. Changes in gland function across the menstrual cycle are primarily governed by the steroid hormones estrogen (E2) and progesterone (P4) but can also be influenced by extrinsic factors from the stroma. Using a human endometrial epithelial organoid system, transcriptome and proteome analyses identified distinct responses of the organoids to steroid hormones and prostaglandin E2 (PGE2). Notably, P4 and PGE2 modulated the basolateral secretion of organoid proteins, particularly cystatin C (CST3), serpin family A member 3 (SERPINA3), and stanniocalcin 1 (STC1). CST3, but not SERPINA3 or STC1, attenuated the in vitro stromal decidualization response to steroid hormones and PGE2. These findings provide evidence that uterine gland-derived factors impact stromal cell decidualization, which has implications for pregnancy establishment and fertility in women.


Assuntos
Dinoprostona , Placenta , Humanos , Gravidez , Feminino , Dinoprostona/metabolismo , Placenta/metabolismo , Endométrio/metabolismo , Implantação do Embrião/fisiologia , Progesterona/metabolismo , Células Estromais/metabolismo , Decídua/metabolismo
8.
Mol Reprod Dev ; 90(7): 459-468, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-35736243

RESUMO

CRISPR-Cas9 gene editing technology provides a method to generate loss-of-function studies to investigate, in vivo, the specific role of specific genes in regulation of reproduction. With proper design and selection of guide RNAs (gRNA) designed to specifically target genes, CRISPR-Cas9 gene editing allows investigation of factors proposed to regulate biological pathways involved with establishment and maintenance of pregnancy. The advantages and disadvantages of using the current gene editing technology in a large farm species is discussed. CRISPR-Cas9 gene editing of porcine conceptuses has generated new perspectives for the regulation of endometrial function during the establishment of pregnancy. The delicate orchestration of conceptus factors facilitates an endometrial proinflammatory response while regulating maternal immune cell migration and expansion at the implantation site is essential for establishment and maintenance of pregnancy. Recent developments and use of endometrial epithelial "organoids" to study endometrial function in vitro provides a future method to screen and target specific endometrial genes as an alternative to generating a gene edited animal model. With continuing improvements in gene editing technology, future researchers will be able to design studies to enhance our knowledge of mechanisms essential for early development and survival of the conceptus.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Gravidez , Feminino , Animais , Suínos/genética , Edição de Genes/métodos , Sistemas CRISPR-Cas/genética , Reprodução/genética , Endométrio/metabolismo
9.
Genesis ; 60(10-12): e23493, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35866844

RESUMO

All mammalian uteri contain glands in their endometrium that develop only or primarily after birth. In mice, those endometrial glands govern post implantation pregnancy establishment via regulation of blastocyst implantation, stromal cell decidualization, and placental development. Here, we describe a new uterine glandular epithelium (GE) specific Cre recombinase mouse line that is useful for the study of uterine gland function during pregnancy. Utilizing CRISPR-Cas9 genome editing, Cre recombinase was inserted into the endogenous serine protease 29 precursor (Prss29) gene. Both Prss29 mRNA and Cre recombinase activity was specific to the GE of the mouse uterus following implantation, but was absent from other areas of the female reproductive tract. Next, Prss29-Cre mice were crossed with floxed forkhead box A2 (Foxa2) mice to conditionally delete Foxa2 specifically in the endometrial glands. Foxa2 was absent in the glands of the post-implantation uterus, and Foxa2 deleted mice exhibited complete infertility after their first pregnancy. These results establish that Prss29-Cre mice are a valuable resource to elucidate and explore the functions of glands in the adult uterus.


Assuntos
Placenta , Útero , Gravidez , Camundongos , Animais , Feminino , Placenta/metabolismo , Útero/fisiologia , Endométrio/metabolismo , Implantação do Embrião/genética , Mamíferos
10.
Endocrinology ; 163(9)2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35895287

RESUMO

Endometrial health is affected by molecular processes that underlie estrogen responses. We assessed estrogen regulation of endometrial function by integrating the estrogen receptor α (ESR1) cistromes and transcriptomes of endometrial biopsies taken from the proliferative and mid-secretory phases of the menstrual cycle together with hormonally stimulated endometrial epithelial organoids. The cycle stage-specific ESR1 binding sites were determined by chromatin immunoprecipitation and next-generation sequencing and then integrated with changes in gene expression from RNA sequencing data to infer candidate ESR1 targets in normal endometrium. Genes with ESR1 binding in whole endometrium were enriched for chromatin modification and regulation of cell proliferation. The distribution of ESR1 binding sites in organoids was more distal from gene promoters when compared to primary endometrium and was more similar to the proliferative than the mid-secretory phase ESR1 cistrome. Inferred organoid estrogen/ESR1 candidate target genes affected formation of cellular protrusions and chromatin modification. Comparison of signaling effected by candidate ESR1 target genes in endometrium vs organoids reveals enrichment of both overlapping and distinct responses. Our analysis of the ESR1 cistromes and transcriptomes from endometrium and organoids provides important resources for understanding how estrogen affects endometrial health and function.


Assuntos
Receptor alfa de Estrogênio , Organoides , Cromatina/genética , Cromatina/metabolismo , Endométrio/metabolismo , Receptor alfa de Estrogênio/metabolismo , Estrogênios/metabolismo , Feminino , Humanos , Ciclo Menstrual/fisiologia , Organoides/metabolismo
11.
Biol Reprod ; 107(4): 977-983, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-35835555

RESUMO

The Notch signaling pathway is required for reproductive success. This pathway activates its transcriptional effector, recombination signal binding protein for immunoglobulin kappa J (Rbpj), to induce transcription of its target genes. This signaling pathway is required for successful decidualization, implantation, and uterine repair following parturition. To identify the compartmental specific roles of the Notch signaling pathway in the establishment of pregnancy, we generated epithelial and decidual stromal cell specific knockouts of Rbpj utilizing lactoferrin iCre and Prl8A2 iCre, respectively. Both conditional knockout mouse models were fertile. The Rbpj epithelial knockout mice displayed 27% resorption sites at E15.5, but this did not significantly impact the number of live born pups compared with controls. In addition, the Rbpj epithelial knockout mice displayed increased estrogen signaling in their stromal compartment. Given that both mouse models exhibited fertility comparable to control animals, the epithelial and stromal specific nature of the iCre recombinases utilized, and previously published Rbpj total uterine knockout mouse models, we conclude that Notch effector Rbpj signaling is required at the initiation of pregnancy to support decidualization in stromal cells, but that Rbpj is not required in the epithelial compartment nor is it required for post-implantation pregnancy success.


Assuntos
Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina , Receptores Notch , Animais , Proteínas de Transporte/metabolismo , Estrogênios , Feminino , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/genética , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Imunoglobulinas/genética , Imunoglobulinas/metabolismo , Lactoferrina/metabolismo , Camundongos , Camundongos Knockout , Gravidez , Receptores Notch/genética , Receptores Notch/metabolismo , Recombinases/genética , Recombinases/metabolismo , Recombinação Genética , Transdução de Sinais/fisiologia , Células Estromais/metabolismo
12.
World Neurosurg ; 164: e992-e1000, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35643401

RESUMO

OBJECTIVE: Cerebral arteriovenous malformations (AVMs) can be treated by microsurgery, stereotactic radiosurgery (SRS) as a stand-alone procedure, or combining embolization and conservative management. This single-center, retrospective review explored the outcomes of patients treated with SRS alone, embolization before SRS (ESRS), or conservative management for cerebral AVMs. METHODS: Demographic details, Spetzler-Martin grade, SRS dose, obliteration, time to obliteration, imaging modality, rebleed, disease-specific mortality, and post-SRS complications were collected. Chi-square tests of independence and 1-way analysis of variance/Kruskal-Wallis tests were performed. RESULTS: Two-hundred and thirty-nine patients were treated with SRS alone, 37 were treated with ESRS, and 83 were conservatively managed. Obliteration rates were 78% (SRS alone) and 70% (ESRS). Rebleed rates were comparable among SRS alone (4%), ESRS (0%), and conservative management (8%). Disease-specific mortality rates were significantly lower for SRS alone (1%) and ESRS (0%) compared with conservative management (6%, X2 [2, n = 358] = 7.50, P = 0.024). Post-SRS complications occurred with SRS alone only and included radiation necrosis (n = 5), cavernous malformations (n = 2), and stroke (n = 1). Obliteration, rebleed, and disease-specific mortality rates were comparable among pediatric (<18 years), nonelderly (18-59 years), and elderly (≥60 years) age groups. CONCLUSIONS: Findings suggest that SRS and ESRS are safe and effective treatments for cerebral AVM (when quantified by obliteration, rebleed, and disease-specific mortality rates). With multinational, prospective, randomized controlled trials with long follow-up periods, the effectiveness and safety of SRS and ESRS compared with conservative management for AVM will be further clarified.


Assuntos
Malformações Arteriovenosas Intracranianas , Radiocirurgia , Idoso , Criança , Tratamento Conservador , Seguimentos , Humanos , Malformações Arteriovenosas Intracranianas/cirurgia , Nova Zelândia , Estudos Prospectivos , Radiocirurgia/métodos , Estudos Retrospectivos , Resultado do Tratamento
13.
Cells ; 11(11)2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35681455

RESUMO

For pregnancy to be established, uterine cells respond to the ovarian hormones, estrogen, and progesterone, via their nuclear receptors, the estrogen receptor (ESR1) and progesterone receptor (PGR). ESR1 and PGR regulate genes by binding chromatin at genes and at distal enhancer regions, which interact via dynamic 3-dimensional chromatin structures. Endometrial epithelial cells are the initial site of embryo attachment and invasion, and thus understanding the processes that yield their receptive state is important. Here, we cultured and treated organoids derived from human epithelial cells, isolated from endometrial biopsies, with estrogen and progesterone and evaluated their transcriptional profiles, their PGR cistrome, and their chromatin conformation. Progesterone attenuated estrogen-dependent gene responses but otherwise minimally impacted the organoid transcriptome. PGR ChIPseq peaks were co-localized with previously described organoid ESR1 peaks, and most PGR and ESR1 peaks were in B (inactive) compartment regions of chromatin. Significantly more ESR1 peaks were assigned to estrogen-regulated genes by considering chromatin loops identified using HiC than were identified using ESR1 peak location relative to closest genes. Overall, the organoids model allowed a definition of the chromatin regulatory components governing hormone responsiveness.


Assuntos
Organoides , Progesterona , Cromatina/metabolismo , Endométrio/metabolismo , Estrogênios/metabolismo , Feminino , Humanos , Organoides/metabolismo , Gravidez , Progesterona/metabolismo , Progesterona/farmacologia , Receptores de Estrogênio/metabolismo
14.
Syst Biol Reprod Med ; 68(4): 286-297, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35394393

RESUMO

It has been hypothesized that circulating concentrations of estradiol during the preovulatory period, can impact subsequent progesterone concentrations. Ovulation was synchronized in nonlactating beef cows (n = 53). Cows that exhibited estrus before gonadotrophin-releasing hormone (GnRH)-induced ovulation (d 0) had greater (p<.01) peak concentrations of estradiol compared with cows that did not express estrus (11.5 ± 0.8 vs. 6.2 ± 0.6 pg/mL), respectively, but there was no difference in ovulatory follicle size (p= .80) or interval from GnRH2 to ovulation (p=.23). Circulating concentrations of progesterone during luteal formation (d 3-7; p=.70 and p=.77) or mid-luteal phase (d 8-14; p=.39 and p=.12) were not affected by elevated periovulatory estradiol or an interaction with day. To investigate the direct influence of estradiol on luteal function, ovulation (d 0) was synchronized in nonlactating beef cows and cows were allocated to three groups (control, n = 5; vehicle injection, n = 4; or an estradiol antagonist (Fulvestrant; ICI 182,780), n = 4. Intrafollicular injection of vehicle (100 µL) or an estradiol antagonist (25 µg Fulvestrant in 100 µL) into the largest follicle occurred on d -2. Concentrations of estradiol increased (p<.0001) from d -2 to 0 but did not differ among groups (p>.50). Furthermore, plasma concentrations of progesterone on d 0 through 20 were not affected by treatment (p=.86). These results indicate that elevated preovulatory estradiol before ovulation was not required to prepare granulosa cells for luteinization or subsequent luteal progesterone secretion but did tend to impact luteal lifespan.


Assuntos
Estradiol , Progesterona , Animais , Bovinos , Corpo Lúteo , Feminino , Fulvestranto , Hormônio Liberador de Gonadotropina , Ovulação
15.
Commun Biol ; 5(1): 191, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35233029

RESUMO

Uterine lumen fluid (ULF) is central to successful pregnancy establishment and maintenance, and impacts offspring wellbeing into adulthood. The current dogma is that ULF composition is primarily governed by endometrial glandular epithelial cell secretions and influenced by progesterone. To investigate the hypothesis that ULF is metabolically semi-autonomous, ULF was obtained from cyclic heifers, and aliquots incubated for various durations prior to analysis by untargeted semi-quantitative metabolomic profiling. Metabolite flux was observed in these ULF isolates, supporting the idea that the biochemical makeup of ULF is semi-autonomously dynamic due to enzyme activities. Subsequent integrative analyses of these, and existing, data predict the specific reactions underpinning this phenomenon. These findings enhance our understanding of the mechanisms leading to pregnancy establishment, with implications for improving fertility and pregnancy outcomes in domestic animals as well as women.


Assuntos
Líquidos Corporais , Doenças Uterinas , Adulto , Animais , Bovinos , Feminino , Fertilidade , Humanos , Gravidez , Progesterona/metabolismo , Doenças Uterinas/metabolismo , Útero/metabolismo
16.
Biol Reprod ; 105(6): 1577-1590, 2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34608481

RESUMO

Establishment and maintenance of pregnancy in the pig is a complex process that relies on conceptus regulation of the maternal proinflammatory response to endometrial attachment. Following elongation, pig conceptuses secrete interferon gamma (IFNG) during attachment to the endometrial luminal epithelium. The objective here was to determine if conceptus production of IFNG is important for early development and establishment of pregnancy. CRISPR/Cas9 gene editing and somatic cell nuclear transfer technologies were used to create an IFNG loss-of-function study in pigs. Wild-type (IFNG+/+) and null (IFNG-/-) fibroblast cells were used to create embryos through somatic cell nuclear transfer. IFNG expression was not detected in IFNG-/- conceptuses on either day 15 or day 17 of pregnancy. Ablation of conceptus IFNG production resulted in the reduction of stromal CD3+ and mast cells, which localized to the site of conceptus attachment on day 15. The uteri of recipients with IFNG-/- conceptuses were inflamed, hyperemic and there was an abundance of erythrocytes in the uterine lumen associated with the degenerating conceptuses. The endometrial stromal extracellular matrix was altered in the IFNG-/- embryo pregnancies and there was an increased endometrial mRNA levels for collagen XVII (COL17A1), matrilin 1 (MATN1), secreted phosphoprotein 1 (SPP1), and cysteine-rich secretory protein 3 (CRISP3), which are involved with repair and remodeling of the extracellular matrix. These results indicate conceptus IFNG production is essential in modulating the endometrial proinflammatory response for conceptus attachment and survival in pigs.


Assuntos
Embrião de Mamíferos/metabolismo , Interferon gama/metabolismo , Prenhez/metabolismo , Sus scrofa/embriologia , Animais , Desenvolvimento Embrionário , Feminino , Gravidez
17.
FASEB J ; 35(10): e21938, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34547143

RESUMO

Uterine glands are essential for the establishment of pregnancy and have critical roles in endometrial receptivity to blastocyst implantation, stromal cell decidualization, and placentation. Uterine gland dysfunction is considered a major contributing factor to pregnancy loss, however our understanding of how glands impact embryo survival and stromal cell decidualization is incomplete. Forkhead box A2 (FOXA2) is expressed only in the glandular epithelium and regulates its development and function. Mice with a conditional deletion of FOXA2 in the uterus are infertile due to defective embryo implantation arising from a lack of leukemia inhibitory factor (LIF), a critical factor of uterine gland origin. Here, a glandless FOXA2-deficient mouse model, coupled with LIF repletion to rescue the implantation defect, was used to investigate the roles of uterine glands in embryo survival and decidualization. Studies found that embryo survival and decidualization were compromised in glandless FOXA2-deficient mice on gestational day 6.5, resulting in abrupt pregnancy loss by day 7.5. These findings strongly support the hypothesis that uterine glands secrete factors other than LIF that impact embryo survival and stromal cell decidualization for pregnancy success.


Assuntos
Decídua/metabolismo , Perda do Embrião , Embrião de Mamíferos/embriologia , Desenvolvimento Embrionário , Células Estromais/metabolismo , Útero/metabolismo , Animais , Decídua/imunologia , Perda do Embrião/imunologia , Embrião de Mamíferos/imunologia , Desenvolvimento Embrionário/imunologia , Feminino , Fator 3-beta Nuclear de Hepatócito/deficiência , Fator Inibidor de Leucemia , Camundongos , Gravidez , Resultado da Gravidez , Células Estromais/imunologia , Transcriptoma , Útero/imunologia
18.
J Immunother Cancer ; 9(8)2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34341132

RESUMO

BACKGROUND: Intratumoral injection of cyclic dinucleotide (CDN) agonists of the stimulator of interferon genes (STING) pathway engages innate immune activation and priming of adaptive immune effectors to foster local and distal tumor clearance. Despite proven therapeutic efficacy in preclinical models, a thorough understanding of how CDNs reprogram suppressive myeloid stroma in mouse and man is lacking. METHODS: Here, we perform deep transcript-level and protein-level profiling of myeloid-derived suppressor cells and M2 macrophages following stimulation with CDNs of ascending potency. Additionally, we leverage orthotopic Kras+/G12DTP53+/R172HPdx1-Cre (KPC) derived models of pancreatic adenocarcinoma (PDAC) to determine the capacity for locally administered CDNs to sensitize PDAC to immune checkpoint blockade. We use bioluminescent in vivo imaging and 30-parameter flow cytometry to profile growth kinetics and remodeling of the tumor stroma post-therapy. RESULTS: Highly potent synthetic STING agonists repolarize suppressive myeloid populations of human and murine origin in part through inhibition of Myc signaling, metabolic modulation, and antagonism of cell cycle. Surprisingly, high-potency synthetic agonists engage qualitatively unique pathways as compared with natural CDNs. Consistent with our mechanistic observations, we find that intratumoral injection of the highest activity STING agonist, IACS-8803, into orthotopic pancreatic adenocarcinoma lesions unmasks sensitivity to checkpoint blockade immunotherapy. Dimensionality reduction analyses of high parameter flow cytometry data reveals substantial contributions of both myeloid repolarization and T cell activation underlying the in vivo therapeutic benefit of this approach. CONCLUSIONS: This study defines the molecular basis of STING-mediated myeloid reprogramming, revealing previously unappreciated and qualitatively unique pathways engaged by CDNs of ascending potency during functional repolarization. Furthermore, we demonstrate the potential for high potency CDNs to overcome immunotherapy resistance in an orthotopic, multifocal model of PDAC.


Assuntos
Imunoterapia/métodos , Proteínas de Membrana/uso terapêutico , Células Supressoras Mieloides/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Animais , Humanos , Masculino , Proteínas de Membrana/farmacologia , Camundongos
19.
Mol Reprod Dev ; 88(7): 482-489, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33973295

RESUMO

Glands of the uterus are essential for the establishment of pregnancy in mice and their products regulate embryo implantation and stromal cell decidualization critical for pregnancy establishment. Forkhead box A2 (FOXA2) is expressed specifically in the glands and a critical regulator of their differentiation, development and function. Progesterone and FOXA2 regulate members of a serine proteinase gene family (Prss28 and Prss29). Here, CRISPR-Cas9 genome-editing was used to create mice with a heterozygous or homozygous deletion of Prss28 or/and Prss29 to determine their biological roles in uterine function. Female mice lacking Prss28 and Prss29 or both developed normally and were fertile without alterations in uterine histoarchitecture, uterine gland number, or and gene expression. Thus, Prss28 and Prss29 are dispensable for female fertility and do not impact endometrial gland development or uterine function mice.


Assuntos
Sistemas CRISPR-Cas/genética , Técnicas de Inativação de Genes/métodos , Serina Endopeptidases/genética , Animais , Endométrio/metabolismo , Feminino , Edição de Genes/métodos , Masculino , Camundongos , Camundongos Knockout , Gravidez , Deleção de Sequência/fisiologia , Serina Endopeptidases/metabolismo , Útero/metabolismo
20.
Proc Natl Acad Sci U S A ; 118(15)2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33876774

RESUMO

Suboptimal uterine fluid (UF) composition can lead to pregnancy loss and likely contributes to offspring susceptibility to chronic adult-onset disorders. However, our understanding of the biochemical composition and mechanisms underpinning UF formation and regulation remain elusive, particularly in humans. To address this challenge, we developed a high-throughput method for intraorganoid fluid (IOF) isolation from human endometrial epithelial organoids. The IOF is biochemically distinct to the extraorganoid fluid (EOF) and cell culture medium as evidenced by the exclusive presence of 17 metabolites in IOF. Similarly, 69 metabolites were unique to EOF, showing asymmetrical apical and basolateral secretion by the in vitro endometrial epithelium, in a manner resembling that observed in vivo. Contrasting the quantitative metabolomic profiles of IOF and EOF revealed donor-specific biochemical signatures of organoids. Subsequent RNA sequencing of these organoids from which IOF and EOF were derived established the capacity to readily perform organoid multiomics in tandem, and suggests that transcriptomic regulation underpins the observed secretory asymmetry. In summary, these data provided by modeling uterine luminal and basolateral fluid formation in vitro offer scope to better understand UF composition and regulation with potential impacts on female fertility and offspring well-being.


Assuntos
Endométrio/metabolismo , Metaboloma , Organoides/metabolismo , Adulto , Células Cultivadas , Endométrio/citologia , Células Epiteliais/metabolismo , Exocitose , Feminino , Humanos , Metabolômica/métodos , Cultura Primária de Células/métodos , Via Secretória , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA