Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Peptides ; 173: 171138, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38147963

RESUMO

The hypothalamic neuropeptides linked to appetite and satiety were investigated in obese mice treated with cotadutide (a dual receptor agonist of glucagon-like peptide 1 (GLP-1R)/Glucagon (GCGR)). Twelve-week-old male C57BL/6 mice were fed a control diet (C group, n = 20) or a high-fat diet (HF group, n = 20) for ten weeks. Each group was further divided, adding cotadutide treatment and forming groups C, CC, HF, and HFC for four additional weeks. The hypothalamic arcuate neurons were labeled by immunofluorescence, and protein expressions (Western blotting) for neuropeptide Y (NPY), proopiomelanocortin (POMC), agouti-related protein (AgRP), and cocaine- and amphetamine-regulated transcript (CART). Cotadutide enhanced POMC and CART neuropeptides and depressed NPY and AGRP neuropeptides. In addition, gene expressions (RT-qPCR) determined that Lepr (leptin receptor) and Calcr (calcitonin receptor) were diminished in HF compared to C but enhanced in CC compared to C and HFC compared to HF. Besides, Socs3 (suppressor of cytokine signaling 3) was decreased in HFC compared to HF, while Sst (somatostatin) was higher in HFC compared to HF; Tac1 (tachykinin 1) and Mc4r (melanocortin-4-receptor) were lower in HF compared to C but increased in HFC compared to HF. Also, Glp1r and Gcgr were higher in HFC compared to HF. In conclusion, the findings are compelling, demonstrating the effects of cotadutide on hypothalamic neuropeptides and hormone receptors of obese mice. Cotadutide modulates energy balance through the gut-brain axis and its associated signaling pathways. The study provides insights into the mechanisms underlying cotadutide's anti-obesity effects and its possible implications for obesity treatment.


Assuntos
Glucagon , Neuropeptídeos , Peptídeos , Camundongos , Animais , Masculino , Proteína Relacionada com Agouti , Glucagon/metabolismo , Camundongos Obesos , Pró-Opiomelanocortina/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Camundongos Endogâmicos C57BL , Neuropeptídeos/genética , Hipotálamo/metabolismo , Neuropeptídeo Y/genética , Peptídeo 1 Semelhante ao Glucagon/metabolismo
2.
Biochem Pharmacol ; 217: 115852, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37832793

RESUMO

We studied the effect of cotadutide, a dual agonist glucagon-like peptide 1 (GLP1)/Glucagon, on interscapular brown adipose tissue (iBAT) remodeling and thermogenesis of obese mice. Twelve-week-old male C57BL/6 mice were fed a control diet (C group, n = 20) or a high-fat diet (HF group, n = 20) for ten weeks. Then, animals were redivided, adding cotadutide treatment: C, CC, HF, and HFC for four additional weeks. The multilocular brown adipocyte structure showed fat conversion (whitening), hypertrophy, and structural disarray in the HF group, which was reverted in cotadutide-treated animals. Cotadutide enhances the body temperature, thermogenesis, and sympathetic innervation (peroxisome proliferator-activated receptor-α, ß3 adrenergic receptor, interleukin 6, and uncoupled protein 1), reduces pro-inflammatory markers (disintegrin and metallopeptidase domain, morphogenetic protein 8a, and neuregulin 4), and improves angiogenesis (vascular endothelial growth factor A, and perlecan). In addition, cotadutide enhances lipolysis (perilipin and cell death-inducing DNA fragmentation factor α), mitochondrial biogenesis (nuclear respiratory factor 1, transcription factor A mitochondrial, mitochondrial dynamin-like GTPase, and peroxisome proliferator-activated receptor gamma coactivator 1α), and mitochondrial fusion/fission (dynamin-related protein 1, mitochondrial fission protein 1, and parkin RBR E3 ubiquitin protein ligase). Cotadutide reduces endoplasmic reticulum stress (activating transcription factor 4, C/EBP homologous protein, and growth arrest and DNA-damage inducible), and extracellular matrix markers (lysyl oxidase, collagen type I α1, collagen type VI α3, matrix metallopeptidases 2 and 9, and hyaluronan synthases 1 and 2). In conclusion, the experimental evidence is compelling in demonstrating cotadutide's thermogenic effect on obese mice's iBAT, contributing to unraveling its action mechanisms and the possible translational benefits.


Assuntos
Tecido Adiposo Marrom , Fator A de Crescimento do Endotélio Vascular , Camundongos , Animais , Masculino , Tecido Adiposo Marrom/metabolismo , Camundongos Obesos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Camundongos Endogâmicos C57BL , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Adipócitos Marrons , Dieta Hiperlipídica/efeitos adversos , Termogênese , Dinaminas/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo
3.
Life Sci ; 327: 121858, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37315839

RESUMO

Obesity and type 2 diabetes mellitus (T2DM) cause morphofunctional alterations in pancreatic islet alpha and beta cells. Therefore, we hypothesize that the new GLP-1/Glucagon receptor dual agonist cotadutide may benefit islet cell arrangement and function. Twelve-week-old C57BL/6 male mice were fed a control diet (C, 10 % kJ fat) or a high-fat diet (HF, 50 % kJ fat) for ten weeks. Then, the animals were divided into four groups for an additional 30 days and daily treated with subcutaneous cotadutide (30 nmol/kg) or vehicle: C, CC (control+cotadutide), HF, and HFC (high-fat+cotadutide). Cotadutide led to weight loss and reduced insulin resistance in the HFC group, increasing insulin receptor substrate 1 and solute carrier family 2 gene expressions in isolated islets. Also, cotadutide enhanced transcriptional factors related to islet cell transdifferentiation, decreasing aristaless-related homeobox and increasing the paired box 4 and 6, pancreatic and duodenal homeobox 1, v-maf musculoaponeurotic fibrosarcoma oncogene family protein A, neurogenin 3, and neurogenic differentiation 1. In addition, cotadutide improved the proliferating cell nuclear antigen, NK6 homeobox 1, B cell leukemia/lymphoma 2, but lessening caspase 3. Furthermore, cotadutide mitigated the endoplasmic reticulum (ER) stress-responsive genes, reducing transcription factor 4, DNA-damage-inducible transcript 3, and growth arrest and DNA-damage-inducible 45. In conclusion, our data demonstrated significant beneficial actions of cotadutide in DIO mice, such as weight loss, glycemic control, and insulin resistance improvement. In addition, cotadutide counteracted the pathological adaptive cellular arrangement of the pancreatic islet in obese mice, improving the markers of the transdifferentiating pathway, proliferation, apoptosis, and ER stress.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Células Secretoras de Insulina , Ilhotas Pancreáticas , Masculino , Camundongos , Animais , Camundongos Obesos , Diabetes Mellitus Tipo 2/metabolismo , Insulina/metabolismo , Camundongos Endogâmicos C57BL , Ilhotas Pancreáticas/metabolismo , Células Secretoras de Insulina/metabolismo , Dieta Hiperlipídica/efeitos adversos , Redução de Peso , DNA/metabolismo
4.
J Mol Endocrinol ; 70(3)2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36753306

RESUMO

Obesity, adipose tissue inflammation, and nonalcoholic fatty liver disease (NAFLD) are associated with insulin resistance and type 2 diabetes (T2D). Cotadutide is a dual agonist GLP-1/glucagon, currently in a preclinical study phase 2 that presents an anti-obesity effect. Diet-induced obese (DIO) C57BL/6 mice were treated for 4 weeks with cotadutide (30 nm/kg once a day at 14:00 h). The study focused on epididymal white adipose tissue (eWAT), liver (NAFLD), inflammation, lipid metabolism, AMP-activated protein kinase (AMPK)/mechanistic target of rapamycin (mTOR) pathways, and the endoplasmic reticulum (ER) stress. As a result, cotadutide controlled weight gain, glucose intolerance, and insulin resistance and showed beneficial effects on plasma markers in DIO mice (triacylglycerol, total cholesterol, alanine aminotransferase, and aspartate aminotransferase, leptin, adiponectin, monocyte chemoattractant protein-1, resistin, interleukin-6, tumor necrosis factor-alpha). Also, cotadutide lessened liver fat accumulation, eWAT proinflammatory markers, and ER stress. In addition, cotadutide improved lipid metabolism genes in eWAT, fatty acid synthase, peroxisome proliferator-activated receptor gamma and mitigates adipocyte hypertrophy and apoptosis. Furthermore, the effects of cotadutide were related to liver AMPK/mTOR pathway and ER stress. In conclusion, cotadutide induces weight loss and treats glucose intolerance and insulin resistance in DIO mice. In addition, cotadutide shows beneficial effects on liver lipid metabolism, mitigating steatosis, inflammation, and ER stress. Besides, in adipocytes, cotadutide decreases hypertrophy and reduces apoptosis. These actions rescuing the AMPK and mTOR pathway, improving lipid metabolism, and lessening NAFLD, inflammation, and ER stress in both eWAT and liver of DIO mice indicate cotadutide as a potentially new pharmacological treatment for T2D and associated obesity.


Assuntos
Diabetes Mellitus Tipo 2 , Intolerância à Glucose , Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Camundongos Obesos , Intolerância à Glucose/metabolismo , Intolerância à Glucose/patologia , Diabetes Mellitus Tipo 2/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Camundongos Endogâmicos C57BL , Fígado/metabolismo , Obesidade/metabolismo , Tecido Adiposo/metabolismo , Inflamação/metabolismo , Hipertrofia/metabolismo , Hipertrofia/patologia , Serina-Treonina Quinases TOR/metabolismo , Dieta Hiperlipídica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA