Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Life Sci ; 316: 121404, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36681184

RESUMO

Epithelial renal cells have the ability to adopt different cellular phenotypes through epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET). These processes are increasingly recognized as important repair factors following acute renal tubular injury. Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid with impact on proliferation, growth, migration, and differentiation which has significant implication in various diseases including cancer and kidney fibrosis. Here we demonstrated that S1P can exert by activating S1P receptor 2 (S1PR2) different functions depending on the stage of cell differentiation. We observed that the differences in the migratory profile of Madin-Darby canine kidney (MDCK) cells depend both on their stage of cell differentiation and the activity of S1PR2, a receptor that can either promote or inhibit the migratory process. Meanwhile in non-differentiated cells S1PR2 activation avoids migration, it is essential on fully differentiated cells. This is the first time that an antagonist effect of S1PR2 was reported for the same cell type. Moreover, in fully differentiated cells, S1PR2 activation is crucial for the progression of EMT - characterized by adherent junctions disassembly, ß-catenin and SNAI2 nuclear translocation and vimentin expression- and depends on ERK 1/2 activation and nuclear translocation. These findings provide a new perspective about the different S1PR2 functions depending on the stage of cell differentiation that can be critical to the modulation of renal epithelial cell plasticity, potentially paving the way for innovative research with pathophysiologic relevance.


Assuntos
Diferenciação Celular , Rim , Receptores de Esfingosina-1-Fosfato , Animais , Cães , Lisofosfolipídeos/metabolismo , Células Madin Darby de Rim Canino , Receptores de Lisoesfingolipídeo/metabolismo , Rim/citologia
2.
J Cell Physiol ; 237(10): 3883-3899, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35908199

RESUMO

The renal collecting ducts (CD) are formed by a fully differentiated epithelium, and their tissue organization and function require the presence of mature cell adhesion structures. In certain circumstances, the cells can undergo de-differentiation by a process called epithelial-mesenchymal transition (EMT), in which the cells lose their epithelial phenotype and acquire the characteristics of the mesenchymal cells, which includes loss of cell-cell adhesion. We have previously shown that in renal papillary CD cells, cell adhesion structures are located in sphingomyelin (SM)-enriched plasma membrane microdomains and the inhibition of SM synthase 1 activity induced CD cells to undergo an EMT process. In the present study, we evaluated the influence of SM metabolism during the EMT of the cells that form the CD of the renal papilla during aging. To this end, primary cultures of renal papillary CD cells from young, middle-, and aged-rats were performed. By combining biochemical and immunofluorescence studies, we found experimental evidence that CD cells undergo an increase in spontaneous and reversible EMT during aging and that at least one of the reasons for this phenomenon is the decrease in SM content due to the combination of decreased SM synthase activity and an increase in SM degradation mediated by neutral sphingomyelinase. Age is a risk factor for many diseases, among which renal fibrosis is included. Our findings highlight the importance of sphingolipids and particularly SM as a modulator of the fate of CD cells and probably contribute to the development of treatments to avoid or reverse renal fibrosis during aging.


Assuntos
Transição Epitelial-Mesenquimal , Nefropatias , Animais , Células Epiteliais/metabolismo , Fibrose , Medula Renal/metabolismo , Ratos , Esfingomielina Fosfodiesterase/genética , Esfingomielinas/metabolismo
3.
PLoS One ; 14(3): e0213917, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30897151

RESUMO

Sphingolipids regulate several aspects of cell behavior and it has been demonstrated that cells adjust their sphingolipid metabolism in response to metabolic needs. Particularly, sphingosine-1-phosphate (S1P), a final product of sphingolipid metabolism, is a potent bioactive lipid involved in the regulation of various cellular processes, including cell proliferation, cell migration, actin cytoskeletal reorganization and cell adhesion. In previous work in rat renal papillae, we showed that sphingosine kinase (SK) expression and S1P levels are developmentally regulated and control de novo sphingolipid synthesis. The aim of the present study was to evaluate the participation of SK/S1P pathway in the triggering of cell differentiation by external hypertonicity. We found that hypertonicity evoked a sharp decrease in SK expression, thus activating the de novo sphingolipid synthesis pathway. Furthermore, the inhibition of SK activity evoked a relaxation of cell-cell adherens junction (AJ) with accumulation of the AJ complex (E-cadherin/ß-catenin/α-catenin) in the Golgi complex, preventing the acquisition of the differentiated cell phenotype. This phenotype alteration was a consequence of a sphingolipid misbalance with an increase in ceramide levels. Moreover, we found that SNAI1 and SNAI2 were located in the cell nucleus with impairment of cell differentiation induced by SK inhibition, a fact that is considered a biochemical marker of epithelial to mesenchymal transition. So, we suggest that the expression and activity of SK1, but not SK2, act as a control system, allowing epithelial cells to synchronize the various branches of sphingolipid metabolism for an adequate cell differentiation program.


Assuntos
Lisofosfolipídeos/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Esfingolipídeos/biossíntese , Esfingosina/análogos & derivados , Junções Aderentes/metabolismo , Animais , Diferenciação Celular , Movimento Celular , Proliferação de Células , Cães , Inibidores Enzimáticos/farmacologia , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Soluções Hipertônicas , Células Madin Darby de Rim Canino , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Fosfotransferases (Aceptor do Grupo Álcool)/genética , RNA Interferente Pequeno/genética , Transdução de Sinais , Fatores de Transcrição da Família Snail/metabolismo , Esfingosina/metabolismo
4.
J Cell Physiol ; 234(8): 13387-13402, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30624780

RESUMO

We have previously demonstrated that kidney embryonic structures are present in rats, and are still developing until postnatal Day 20. Consequently, at postnatal Day 10, the rat renal papilla contains newly formed collecting duct (CD) cells and others in a more mature stage. Performing primary cultures, combined with immunocytochemical and time-lapse analysis, we investigate the cellular mechanisms that mediate the postnatal CD formation. CD cells acquired a greater degree of differentiation, as we observed that they gradually lose the ability to bind BSL-I lectin, and acquire the capacity to bind Dolichos biflorus. Because CD cells retain the same behavior in culture than in vivo, and by using DBA and BSL-I as markers of cellular lineage besides specific markers of epithelial/mesenchymal phenotype, the experimental results strongly suggest the existence of mesenchymal cell insertion into the epithelial CD sheet. We propose such a mechanism as an alternative strategy for CD growing and development.


Assuntos
Túbulos Renais Coletores/citologia , Túbulos Renais Coletores/crescimento & desenvolvimento , Animais , Aquaporina 2/metabolismo , Diferenciação Celular , Movimento Celular , Células Cultivadas , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Glicoconjugados/metabolismo , Imageamento Tridimensional , Medula Renal/citologia , Medula Renal/crescimento & desenvolvimento , Medula Renal/metabolismo , Túbulos Renais Coletores/metabolismo , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Lectinas de Plantas/metabolismo , Ratos , Ratos Wistar , Receptor B2 da Bradicinina/metabolismo , Imagem com Lapso de Tempo
5.
J Cell Physiol ; 233(8): 6173-6195, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29330844

RESUMO

It is known that bradykinin (BK) B2 receptor (B2R) is expressed in the collecting duct (CD) cells of the newborn rat kidney, but little is known about its role during early postnatal life. Therefore, we hypothesize that BK could participate in the mechanisms that mediate CD formation during the postnatal renal development. Performing primary cultures, combined with biochemical, immunocytochemical, and time-lapse analysis, we studied the role of BK in CD cell behavior isolated from renal papilla of neonatal rats. A reverse relationship was observed between B2R expression and the degree of CD epithelial cell sheet maturation. BK stimulation induced CD cell association upon B2R activation. The lack of B2R expression in cells showing mature adherens junctions suggested that BK is mostly involved in early adhesive events, thus favoring the initial formation of CD during development. Time-lapse analysis revealed that BK induced a high protrusive activity of CD cells, denoted by ruffle formation and lamellipodia extension. PI3K was involved in the BK-induced CD cell-cell association and the acquisition of the migratory phenotype since, when inhibited, membrane ruffles, and filopodia between cells diminished. Results indicate that the actions of BK mediated by PI3K activation were due to the downstream Akt and Rac pathways. This study, performed with CD cells that were not genetically manipulated, provides new experimental evidence supporting a novel role of BK in rat renal CD organization. As B2R blockade results in abnormal tubular differentiation, our results contribute to better understanding the etiology of human congenital renal malformation and diseases.


Assuntos
Bradicinina/metabolismo , Receptor B2 da Bradicinina/metabolismo , Animais , Células Cultivadas , Células Epiteliais/metabolismo , Feminino , Masculino , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Wistar , Transdução de Sinais/fisiologia
6.
Biochim Biophys Acta Mol Cell Res ; 1865(2): 309-322, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29128370

RESUMO

Epithelial tissue requires that cells attach to each other and to the extracellular matrix by the assembly of adherens junctions (AJ) and focal adhesions (FA) respectively. We have previously shown that, in renal papillary collecting duct (CD) cells, both AJ and FA are located in sphingomyelin (SM)-enriched plasma membrane microdomains. In the present work, we investigated the involvement of SM metabolism in the preservation of the epithelial cell phenotype and tissue organization. To this end, primary cultures of renal papillary CD cells were performed. Cultured cells preserved the fully differentiated epithelial phenotype as reflected by the presence of primary cilia. Cells were then incubated for 24h with increasing concentrations of D609, a SM synthase (SMS) inhibitor. Knock-down experiments silencing SMS 1 and 2 were also performed. By combining biochemical and immunofluorescence studies, we found experimental evidences suggesting that, in CD cells, SMS 1 activity is essential for the preservation of cell-cell adhesion structures and therefore for the maintenance of CD tissue/tubular organization. The inhibition of SMS 1 activity induced CD cells to lose their epithelial phenotype and to undergo an epithelial-mesenchymal transition (EMT) process.


Assuntos
Células Epiteliais/enzimologia , Transição Epitelial-Mesenquimal , Túbulos Renais Coletores/enzimologia , Transferases (Outros Grupos de Fosfato Substituídos)/antagonistas & inibidores , Animais , Adesão Celular , Células Epiteliais/citologia , Túbulos Renais Coletores/citologia , Masculino , Ratos , Ratos Wistar , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo
7.
Biochim Biophys Acta ; 1861(6): 513-23, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27032756

RESUMO

Phosphatidylcholine (PC) is the main constituent of mammalian cell membranes. Consequently, preservation of membrane PC content and composition - PC homeostasis - is crucial to maintain cellular life. PC biosynthetic pathway is generally controlled by CTP:phosphocholine cytidylyltransferase (CCT), which is considered the rate-limiting enzyme. CCTα is an amphitropic protein, whose enzymatic activity is commonly associated with endoplasmic reticulum redistribution. However, most of the enzyme is located inside the nuclei. Here, we demonstrate that CCTα is the most abundant isoform in renal collecting duct cells, and its redistribution is dependent on endogenous prostaglandins. Previously we have demonstrated that PC synthesis was inhibited by indomethacin (Indo) treatment, and this effect was reverted by exogenous PGD(2). In this work we found that Indo induced CCTα distribution into intranuclear Lamin A/C foci. Exogenous PGD(2) reverted this effect by inducing CCTα redistribution to nuclear envelope, suggesting that PGD(2) maintains PC synthesis by CCTα mobilization. Interestingly, we found that the effect of PGD(2) was dependent on ERK1/2 activation. In conclusion, our previous observations and the present results lead us to suggest that papillary cells possess the ability to maintain their structural integrity through the synthesis of their own survival molecule, PGD(2), by modulating CCTα intracellular location.


Assuntos
Núcleo Celular/enzimologia , Colina-Fosfato Citidililtransferase/metabolismo , Células Epiteliais/efeitos dos fármacos , Membrana Nuclear/enzimologia , Prostaglandina D2/farmacologia , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Western Blotting , Células Cultivadas , Ativação Enzimática/efeitos dos fármacos , Células Epiteliais/metabolismo , Indometacina/farmacologia , Rim/citologia , Masculino , Microscopia de Fluorescência , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Modelos Biológicos , Transporte Proteico/efeitos dos fármacos , Ratos Wistar
8.
Biochim Biophys Acta ; 1818(3): 491-501, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22155258

RESUMO

In epithelial tissues, adherens junctions (AJ) mediate cell-cell adhesion by using proteins called E-cadherins, which span the plasma membrane, contact E-cadherin on other cells and connect with the actin cytoskeleton inside the cell. Although AJ protein complexes are inserted in detergent-resistant membrane microdomains, the influence of membrane lipid composition in the preservation of AJ structures has not been extensively addressed. In the present work, we studied the contribution of membrane lipids to the preservation of renal epithelial cell-cell adhesion structures. We biochemically characterized the lipid composition of membranes containing AJ complexes. By using lipid membrane-affecting agents, we found that such agents induced the formation of new AJ protein-containing domains of different lipid composition. By using both biochemical approaches and fluorescence microscopy we demonstrated that the membrane phospholipid composition plays an essential role in the in vivo maintenance of AJ structures involved in cell-cell adhesion structures in renal papillary collecting duct cells.


Assuntos
Caderinas/metabolismo , Comunicação Celular/fisiologia , Células Epiteliais/metabolismo , Adesões Focais/metabolismo , Túbulos Renais Coletores/metabolismo , Lipídeos de Membrana/metabolismo , Animais , Adesão Celular/fisiologia , Células Cultivadas , Células Epiteliais/citologia , Túbulos Renais Coletores/citologia , Masculino , Ratos , Ratos Wistar
9.
Cancer Res ; 71(22): 7113-24, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22084446

RESUMO

Concomitant tumor resistance (CR) is a phenomenon originally described in 1906 in which a tumor-bearing host is resistant to the growth of secondary tumor implants and metastasis. Although recent studies have indicated that T-cell-dependent processes mediate CR in hosts bearing immunogenic small tumors, manifestations of CR induced by immunogenic and nonimmunogenic large tumors have been associated with an elusive serum factor. In this study, we identify this serum factor as tyrosine in its meta and ortho isoforms. In three different murine models of cancer that generate CR, both meta-tyrosine and ortho-tyrosine inhibited tumor growth. In addition, we showed that both isoforms of tyrosine blocked metastasis in a fourth model that does not generate CR but is sensitive to CR induced by other tumors. Mechanistic studies showed that the antitumor effects of the tyrosine isoforms were mediated, in part, by early inhibition of mitogen-activated protein/extracellular signal-regulated kinase pathway and inactivation of STAT3, potentially driving tumor cells into a state of dormancy. By revealing a molecular basis for the classical phenomenon of CR, our findings may stimulate new generalized approaches to limit the development of metastases that arise after resection of primary tumors, an issue of pivotal importance to oncologists and their patients.


Assuntos
Transplante de Neoplasias/imunologia , Neoplasias Experimentais/imunologia , Tirosina/fisiologia , Animais , Cromatografia Líquida de Alta Pressão , Resistência à Doença , MAP Quinases Reguladas por Sinal Extracelular/fisiologia , Feminino , Neoplasias Pulmonares/prevenção & controle , Neoplasias Pulmonares/secundário , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias Experimentais/patologia , Fenilalanina/farmacologia , Fator de Transcrição STAT3/fisiologia
10.
Cells Tissues Organs ; 192(5): 314-24, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20606403

RESUMO

Sphingosine kinase-1 (SPHK1) modulates the proliferation, apoptosis and differentiation of keratinocytes through the regulation of ceramide and sphingosine-1-phosphate levels. However, studies on the expression of SPHK1 in human head and neck squamous cell carcinoma (HNSCC) specimens are lacking. Therefore, the aim of the present work was to evaluate SPHK1 expression in human primary HNSCCs and to correlate the results with clinical and anatomopathological parameters. We investigated the expression of this protein by immunohistochemistry performed in tissue microarrays of HNSCC and in an independent cohort of 37 paraffin-embedded specimens. SPHK1 expression was further validated by real-time PCR performed on laser capture-microdissected tissue samples. The positive rate of SPHK1 protein in the cancerous tissues was significantly higher (74%) than that in the nontumor oral tissues (23%), and malignant tissues showed stronger immunoreactivity for SPHK1 than normal matching samples. These results were confirmed by real-time PCR quantification of SPHK1 mRNA. Interestingly, the positive expression of SPHK1 was associated with shorter patient survival time (Kaplan-Meier survival curves) and with the loss of p21 expression. Taken together, these results demonstrate that SPHK1 is upregulated in HNSCC and provide clues of the role SPHK1 might play in tumor progression.


Assuntos
Biomarcadores Tumorais/análise , Carcinoma de Células Escamosas/enzimologia , Neoplasias de Cabeça e Pescoço/enzimologia , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Western Blotting , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/mortalidade , Carcinoma de Células Escamosas/patologia , Progressão da Doença , Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/mortalidade , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Análise em Microsséries , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Reação em Cadeia da Polimerase , Prognóstico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Esfingolipídeos/metabolismo , Regulação para Cima
11.
Am J Physiol Renal Physiol ; 297(5): F1181-91, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19759271

RESUMO

Focal adhesions (FAs) are structures of cell attachment to the extracellular matrix. We previously demonstrated that the intrarenal hormone bradykinin (BK) induces the restructuring of FAs in papillary collecting duct cells by dissipation of vinculin, but not talin, from FAs through a mechanism that involves PLCbeta activation, and that it also induces actin cytoskeleton reorganization. In the present study we investigated the mechanism by which BK induces the dissipation of vinculin-stained FAs in collecting duct cells. We found that BK induces the internalization of vinculin by a noncaveolar and independent pinocytic pathway and that at least a fraction of this protein is delivered to the recycling endosomal compartment, where it colocalizes with the transferrin receptor. Regarding the reassembly of vinculin-stained FAs, we found that BK induces the formation of phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2]-enriched vinculin-containing vesicles, which, by following a polarized exocytic route, transport vinculin to the site of FA assembly, an action that depends on actin filaments. The present study, which was carried out with cells that were not genetically manipulated, shows for the first time that BK induces the formation of vesicle-like structures containing vinculin and PtdIns(4,5)P2, which transport vinculin to the site of FA assembly. Therefore, the modulation of the formation of these vesicle-like structures could be a physiological mechanism through which the cell can reuse the BK-induced internalized vinculin to be delivered for newly forming FAs in renal papillary collecting duct cells.


Assuntos
Bradicinina/farmacologia , Túbulos Renais Coletores/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Vinculina/metabolismo , Animais , Caveolina 1/metabolismo , Endocitose/efeitos dos fármacos , Adesões Focais/efeitos dos fármacos , Túbulos Renais Coletores/citologia , Túbulos Renais Coletores/efeitos dos fármacos , Masculino , Microscopia de Fluorescência , Fosfatidilinositol 4,5-Difosfato , Pinocitose/efeitos dos fármacos , Ratos , Ratos Wistar , Receptor B2 da Bradicinina/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
12.
Lipids ; 43(4): 343-52, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18288513

RESUMO

Focal contacts (FC) are membrane-associated multi-protein complexes that mediate cell-extracellular matrix (ECM) adhesion. FC complexes are inserted in detergent-resistant membrane microdomains enriched in phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2); however, the influence of membrane lipid composition in the preservation of FC structures has not been extensively addressed. In the present work, we studied the contribution of membrane lipids to the preservation of renal epithelial cell adhesion structures. We biochemically characterized the lipid composition of membrane-containing FC complexes. By using cholesterol and PtdIns(4,5)P2)affecting agents, we demonstrated that such agents did not affect any particular type of lipid but induced the formation of new FC-containing domains of completely different lipid composition. By using both biochemical approaches and fluorescence microscopy we demonstrated that phospholipid composition plays an essential role in the in vivo maintenance of FC structures involved in cell-ECM adhesion.


Assuntos
Células Epiteliais/metabolismo , Matriz Extracelular/fisiologia , Lipídeos de Membrana/química , Animais , Adesão Celular , Células Epiteliais/citologia , Adesões Focais/metabolismo , Adesões Focais/ultraestrutura , Medula Renal/citologia , Masculino , Lipídeos de Membrana/metabolismo , Microscopia de Fluorescência , Ratos , Ratos Wistar
13.
Cell Adh Migr ; 2(3): 180-3, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19262116

RESUMO

Focal adhesions mediate cell-extracellular matrix adhesion. They are inserted in detergent-resistant membrane microdomains enriched in phosphatidylinositol-4,5-bisphosphate. In spite of the relevance that membrane lipids appear to have on cell adhesion structures, to our knowledge, there are no previous reports on the membrane lipid composition where focal adhesions are located in vivo or on how changes in local membrane composition contribute to focal adhesion maintenance. This may be due to the fact that the explosion of information in the fields of genomics and proteomics has not been matched by a corresponding advancement of knowledge in the field of lipids. The physiological importance of lipids is illustrated by the numerous diseases to which lipid abnormalities contribute. To gain insight into the role of membrane lipid composition in the preservation of epithelial cell adhesion to the substratum, how specific changes in the membrane lipid composition in vivo affect the maintenance of focal adhesions in renal papillae collecting duct cells has been previously studied. It is currently considered that phosphatidylinositol-4,5-bisphosphate plays a crucial role in the maintenance of assembled focal adhesion. However, such pool of polyphosphoinositides has to be part of a domain of a specific lipid composition to serve as a membrane lipid stabilizing the focal adhesion plaque.


Assuntos
Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Detergentes/farmacologia , Matriz Extracelular/metabolismo , Metabolismo dos Lipídeos , Lipídeos/química , Adesão Celular , Humanos
14.
Glycobiology ; 16(5): 359-67, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16461453

RESUMO

Several studies indicate that hyaluronan oligosaccharides (oHA) are able to modulate growth and cell survival in solid tumors; however, no studies have been undertaken to analyze the effect of oHA on T-lymphoid disorders. In this work we showed that oHA were able to induce apoptosis in lymphoma cell lines. Since PI3-K/Akt and nuclear factor-kappaB (NF-kappaB) are major factors involved in cell survival and anti-apoptotic pathways in lymphoma cells, we hypothesized that oHA could induce apoptosis through inhibition of these pathways. oHA were identified by a method which allows characterization of length using a high pH anion exchange chromatography with pulse amperometric detection (HPAEC-PAD). oHA inhibited PIP(3) production (principal product of PI3-K activity) and reduced Akt phosphorylation levels, similarly to the specific inhibitor wortmannin. However, treatment with either oHA or wortmannin failed to inhibit constitutive NF-kappaB activity and modulate IkappaBalpha protein levels, suggesting that PI3-K and NF-kappaB signaling pathways are not related in the cell lines used. Cell behavior differed using native hyaluronan (HA), which induced PIP(3) production, Akt phosphorylation, and NF-kappaB activation, although not related with cell survival since treatment with native HA showed no effect on apoptosis. Our results suggest that oHA induce apoptosis by suppression of PI3-K/Akt cell survival pathway without involving NF-kappaB activation, through a mechanism that differs from the one mediated by native HA.


Assuntos
Apoptose/efeitos dos fármacos , Ácido Hialurônico/farmacologia , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Morte Celular , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Ácido Hialurônico/química , Linfoma/patologia , Camundongos , Peso Molecular , Transdução de Sinais
15.
Anat Embryol (Berl) ; 205(5-6): 431-40, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12382146

RESUMO

We have investigated the temporal maturation of the rat kidney during the postnatal developmental period. As a result, we observed the following: an active process of cortical cell proliferation and differentiation occurs as late as day 20. The medulla is the most immature zone at birth and displays the greatest morphological changes during this period. At birth, no distinction exists between inner and outer medulla, and the outer and inner strip of the outer medulla can be distinguished as late as day 30. Remodeling of the ECM surrounding collecting ducts occurs in the medulla twice, stopping at day 11 and it occurs in the papilla three times, stopping at day 20. The increase of kidney size is temporally different for each kidney zone. The cortex and the papilla acquire the morphological appearance of the adult kidney before the medulla does. Consequently, the medulla remains at the highest degree of immaturation among the kidney zones for a relatively long postnatal period.


Assuntos
Córtex Renal/citologia , Córtex Renal/crescimento & desenvolvimento , Medula Renal/citologia , Medula Renal/crescimento & desenvolvimento , Animais , Divisão Celular/fisiologia , Células Epiteliais/química , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Feminino , Glicosilação , Lectinas/metabolismo , Lectinas/farmacologia , Masculino , Antígeno Nuclear de Célula em Proliferação/análise , Ratos , Ratos Wistar
16.
Biochim Biophys Acta ; 1583(2): 185-94, 2002 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-12117562

RESUMO

Phosphatidylcholine (PC) is the most abundant phospholipid in mammalian cell membranes. Several lines of evidence support that PC homeostasis is preserved by the equilibrium between PC biosynthetic enzymes and phospholipases catabolic activities. We have previously shown that papillary synthesis of PC depends on prostaglandins (PGs) that modulate biosynthetic enzymes. In papillary tissue, under bradikynin stimulus, arachidonic acid (AA) mobilization (the substrate for PG synthesis) requires a previous phospholipase C (PLC) activation. Thus, in the present work, we study the possible involvement of PLC in PC biosynthesis and its relationship with PG biosynthetic pathway on the maintenance of phospholipid renewal in papillary membranes; we also evaluated the relevance of CDP-choline pathway enzymes compartmentalization. To this end, neomycin, U-73122 and dibutiryl cyclic AMP, reported as PLC inhibitors, were used to study PC synthesis in rat renal papilla. All the PLC inhibitors assayed impaired PC synthesis. PG synthesis was also blocked by PLC inhibitors without affecting cyclooxygenase activity, indicating a metabolic connection between both pathways. However, we found that PC biosynthesis decrease in the presence of PLC inhibitors was not a consequence of PG decreased synthesis, suggesting that basal PLC activity and PGs exert their effect on different targets of PC biosynthetic pathway. The study of PC biosynthetic enzymes showed that PLC inhibitors affect CTP:phosphocholine cytidylyltransferase (CCT) activity while PGD(2) operates on CDP-choline:1,2-diacylglycerol cholinephosphotransferase (CPT), both activities associated to papillary enriched-nuclei fraction. The present results suggest that renal papillary PC synthesis is a highly regulated process under basal conditions. Such regulation might occur at least at two different levels of the CDP-choline pathway: on the one hand, PLC operates on CCT activity; on the other, while PGs regulate CPT activity.


Assuntos
Colina-Fosfato Citidililtransferase/metabolismo , Diacilglicerol Colinofosfotransferase/metabolismo , Rim/metabolismo , Fosfatidilcolinas/biossíntese , Prostaglandina D2/farmacologia , Fosfolipases Tipo C/antagonistas & inibidores , Animais , Bucladesina/farmacologia , Técnicas de Cultura , Estrenos/farmacologia , Masculino , Neomicina/farmacologia , Prostaglandinas/biossíntese , Prostaglandinas/farmacologia , Pirrolidinonas/farmacologia , Ratos , Ratos Wistar
17.
Arch. argent. alerg. inmunol. clín ; 31(1): 18-25, ene.-mar. 2000. ilus, tab, graf
Artigo em Espanhol | LILACS | ID: lil-258603

RESUMO

Antecedentes: los metabolitos estables de la Prostaglandina D2 (PGD2) mastocitaria 9 Ó11ß Prostaglandina F2 (9 Ó11ßPGF2) y de los cis-leucotrienos (LTE4) medidos en orina reflejan la producción de estos mediadores. Objetivos: determinar el rol de los leucotrienos y de la Prostaglandina D2 a través de la relación existente entre la provocación del asma por ejercicio (AIE) y los niveles urinarios de Laucotrieno E4 (LTE4) y 9 Ó11ßPGF2. Materiales y métodos: fueron estudiados 24 niños con asma (6-14 años) y 9 niños sanos como control. En todos los asmáticos y en 5 controles se evaluó la presencia de AIE mediante prueba de carrera libre durante 7 min, alcanzando el 80 por ciento de frecuencia cardíaca máxima para la edad. Se realizaron espirometrías basales y post prueba (secuenciales) y se colectó orina inmediatamente antes y 45 minutos despues de la prueba. LTE4 y 9 Ó11ßPGF2 fue evaluada por enzimainmunoensayos específicos. Resultados: Los 5 controles normales no presentaron asma por ejercicio, de los 24 pacientes asmáticos 12 no presentaron AIE y en 12 la prueba fue posititva (VEF1s cae > 15 por ciento). Las medias de los valores basales y post ejercicio de LTE4 y 9 Ó11ßPGF2 en pg/mg creatinina se tabulan a continuación: Asma por ejercicio: 9 Ó11ßPGF2: Basal: 3,39; Post: 7,95; p=0,001; LTE4: Basal: 4,00; Post: 9,39; p=0,002. Asma sin ejercicio: 9 Ó11ßPGF2: Basal: 3,98; Post: 6,28; p=0,02; LTE4: Basal: 5,91; Post: 7,04; p=0,242. Los niveles de 9 Ó11ßPGF2 y LTE4 de los controles normales no variaron significativamente post ejercicio. Conclusión: en los pacientes con asma por ejercicio se verifica activación mastocitaria con liberación de PGD2 que se demuestra como aumento de 9 Ó11ßPGF2 urinaria, y de los leucotrienos aumento del LTE4. El aumento de LTE4 es específico para asma por ejercicio en tanto que la 9 Ó11ßPGF2 aumenta en ambos grupos


Assuntos
Humanos , Masculino , Feminino , Adolescente , Asma Induzida por Exercício/diagnóstico , Leucotrieno E4 , Biomarcadores/urina , Prostaglandina D2 , Asma Induzida por Exercício/fisiopatologia , Estudos de Casos e Controles , Leucotrieno E4/urina , Leucotrienos , Mastócitos/imunologia , Prostaglandina D2/urina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA