Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1235675, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37675103

RESUMO

Pathogens have developed intricate strategies to overcome the host's innate immune responses. In this paper we use live-cell microscopy with a single bacterium resolution to follow in real time interactions between the food-borne pathogen L. monocytogenes and host macrophages, a key event controlling the infection in vivo. We demonstrate that infection results in heterogeneous outcomes, with only a subset of bacteria able to establish a replicative invasion of macrophages. The fate of individual bacteria in the same host cell was independent from the host cell and non-cooperative, being independent from co-infecting bacteria. A higher multiplicity of infection resulted in a reduced probability of replication of the overall bacterial population. By use of internalisation assays and conditional probabilities to mathematically describe the two-stage invasion process, we demonstrate that the higher MOI compromises the ability of macrophages to phagocytose bacteria. We found that the rate of phagocytosis is mediated via the secreted Listeriolysin toxin (LLO), while the probability of replication of intracellular bacteria remained constant. Using strains expressing fluorescent reporters to follow transcription of either the LLO-encoding hly or actA genes, we show that replicative bacteria exhibited higher PrfA regulon expression in comparison to those bacteria that did not replicate, however elevated PrfA expression per se was not sufficient to increase the probability of replication. Overall, this demonstrates a new role for the population-level, but not single cell, PrfA-mediated activity to regulate outcomes of host pathogen interactions.


Assuntos
Listeria monocytogenes , Macrófagos , Fagocitose , Microscopia , Imunidade Inata
2.
Dev Cell ; 57(10): 1211-1225.e6, 2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35447090

RESUMO

Mitochondrial dysfunction is interconnected with cancer. Nevertheless, how defective mitochondria promote cancer is poorly understood. We find that mitochondrial dysfunction promotes DNA damage under conditions of increased apoptotic priming. Underlying this process, we reveal a key role for mitochondrial dynamics in the regulation of DNA damage and genome instability. The ability of mitochondrial dynamics to regulate oncogenic DNA damage centers upon the control of minority mitochondrial outer membrane permeabilization (MOMP), a process that enables non-lethal caspase activation leading to DNA damage. Mitochondrial fusion suppresses minority MOMP and its associated DNA damage by enabling homogeneous mitochondrial expression of anti-apoptotic BCL-2 proteins. Finally, we find that mitochondrial dysfunction inhibits pro-apoptotic BAX retrotranslocation, causing BAX mitochondrial localization and thereby promoting minority MOMP. Unexpectedly, these data reveal oncogenic effects of mitochondrial dysfunction that are mediated via mitochondrial dynamics and caspase-dependent DNA damage.


Assuntos
Caspases , Dinâmica Mitocondrial , Apoptose/genética , Proteínas Reguladoras de Apoptose/genética , Caspases/metabolismo , Dano ao DNA , Instabilidade Genômica , Humanos , Proteína X Associada a bcl-2/metabolismo
3.
Cell Commun Signal ; 18(1): 77, 2020 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-32448393

RESUMO

BACKGROUND: Ability to adapt to temperature changes trough the Heat Shock Response (HSR) pathways is one of the most fundamental and clinically relevant cellular response systems. Heat Shock (HS) affects the signalling and gene expression responses of the Nuclear Factor κB (NF-κB) transcription factor, a critical regulator of proliferation and inflammation, however, our quantitative understanding of how cells sense and adapt to temperature changes is limited. METHODS: We used live-cell time-lapse microscopy and mathematical modelling to understand the signalling of the NF-κB system in the human MCF7 breast adenocarcinoma cells in response to pro-inflammatory Interleukin 1ß (IL1ß) and Tumour Necrosis Factor α (TNFα) cytokines, following exposure to a 37-43 °C range of physiological and clinical temperatures. RESULTS: We show that exposure to 43 °C 1 h HS inhibits the immediate NF-κB signalling response to TNFα and IL1ß stimulation although uptake of cytokines is not impaired. Within 4 h after HS treatment IL1ß-induced NF-κB responses return to normal levels, but the recovery of the TNFα-induced responses is still affected. Using siRNA knock-down of Heat Shock Factor 1 (HSF1) we show that this stimulus-specificity is conferred via the Inhibitory κB kinase (IKK) signalosome where HSF1-dependent feedback regulates TNFα, but not IL1ß-mediated IKK recovery post HS. Furthermore, we demonstrate that through the temperature-dependent denaturation and recovery of IKK, TNFα and IL1ß-mediated signalling exhibit different temperature sensitivity and adaptation to repeated HS when exposed to a 37-43 °C temperature range. Specifically, IL1ß-mediated NF-κB responses are more robust to temperature changes in comparison to those induced by TNFα treatment. CONCLUSIONS: We demonstrate that the kinetics of the NF-κB system following temperature stress is cytokine specific and exhibit differential adaptation to temperature changes. We propose that this differential temperature sensitivity is mediated via the IKK signalosome, which acts as a bona fide temperature sensor trough the HSR cross-talk. This novel quantitative understanding of NF-κB and HSR interactions is fundamentally important for the potential optimization of therapeutic hyperthermia protocols. Video Abstract.


Assuntos
Expressão Gênica/efeitos dos fármacos , Resposta ao Choque Térmico , Inflamação/metabolismo , Interleucina-1beta/farmacologia , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Humanos , Células MCF-7
4.
Front Immunol ; 10: 2168, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31572379

RESUMO

The heterogeneous nature of inflammatory bowel disease (IBD) presents challenges, particularly when choosing therapy. Activation of the NF-κB transcription factor is a highly regulated, dynamic event in IBD pathogenesis. Using a lentivirus approach, NF-κB-regulated luciferase was expressed in patient macrophages, isolated from frozen peripheral blood mononuclear cell samples. Following activation, samples could be segregated into three clusters based on the NF-κB-regulated luciferase response. The ulcerative colitis (UC) samples appeared only in the hypo-responsive Cluster 1, and in Cluster 2. Conversely, Crohn's disease (CD) patients appeared in all Clusters with their percentage being higher in the hyper-responsive Cluster 3. A positive correlation was seen between NF-κB-induced luciferase activity and the concentrations of cytokines released into medium from stimulated macrophages, but not with serum or biopsy cytokine levels. Confocal imaging of lentivirally-expressed p65 activation revealed that a higher proportion of macrophages from CD patients responded to endotoxin lipid A compared to controls. In contrast, cells from UC patients exhibited a shorter duration of NF-κB p65 subunit nuclear localization compared to healthy controls, and CD donors. Analysis of macrophage cytokine responses and patient metadata revealed a strong correlation between CD patients who smoked and hyper-activation of p65. These in vitro dynamic assays of NF-κB activation in blood-derived macrophages have the potential to segregate IBD patients into groups with different phenotypes and may therefore help determine response to therapy.


Assuntos
Núcleo Celular/imunologia , Colite Ulcerativa/imunologia , Doença de Crohn/imunologia , Macrófagos/imunologia , Transdução de Sinais/imunologia , Fator de Transcrição RelA/imunologia , Transporte Ativo do Núcleo Celular/genética , Transporte Ativo do Núcleo Celular/imunologia , Adulto , Animais , Núcleo Celular/genética , Colite Ulcerativa/genética , Colite Ulcerativa/patologia , Doença de Crohn/genética , Doença de Crohn/patologia , Feminino , Humanos , Macrófagos/patologia , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Transdução de Sinais/genética , Fator de Transcrição RelA/genética
5.
Sci Signal ; 11(540)2018 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-30042130

RESUMO

Toll-like receptor (TLR) signaling regulates macrophage activation and effector cytokine propagation in the constrained environment of a tissue. In macrophage populations, TLR4 stimulates the dose-dependent transcription of nuclear factor κB (NF-κB) target genes. However, using single-RNA counting, we found that individual cells exhibited a wide range (three orders of magnitude) of expression of the gene encoding the proinflammatory cytokine tumor necrosis factor-α (TNF-α). The TLR4-induced TNFA transcriptional response correlated with the extent of NF-κB signaling in the cells and their size. We compared the rates of TNF-α production and uptake in macrophages and mouse embryonic fibroblasts and generated a mathematical model to explore the heterogeneity in the response of macrophages to TLR4 stimulation and the propagation of the TNF-α signal in the tissue. The model predicts that the local propagation of the TLR4-dependent TNF-α response and cellular NF-κB signaling are limited to small distances of a few cell diameters between neighboring tissue-resident macrophages. In our predictive model, TNF-α propagation was constrained by competitive uptake of TNF-α from the environment, rather than by heterogeneous production of the cytokine. We propose that the highly constrained architecture of tissues enables effective localized propagation of inflammatory cues while avoiding out-of-context responses at longer distances.


Assuntos
Inflamação/imunologia , Ativação de Macrófagos , Macrófagos/metabolismo , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo , Animais , Células Cultivadas , Células HEK293 , Humanos , Inflamação/metabolismo , Macrófagos/imunologia , Camundongos , Camundongos Transgênicos , NF-kappa B/metabolismo , Subunidade p50 de NF-kappa B/genética , Subunidade p50 de NF-kappa B/metabolismo , Células RAW 264.7 , Análise de Célula Única , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/imunologia
6.
PLoS Comput Biol ; 14(4): e1006130, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29708974

RESUMO

Elevated temperature induces the heat shock (HS) response, which modulates cell proliferation, apoptosis, the immune and inflammatory responses. However, specific mechanisms linking the HS response pathways to major cellular signaling systems are not fully understood. Here we used integrated computational and experimental approaches to quantitatively analyze the crosstalk mechanisms between the HS-response and a master regulator of inflammation, cell proliferation, and apoptosis the Nuclear Factor κB (NF-κB) system. We found that populations of human osteosarcoma cells, exposed to a clinically relevant 43°C HS had an attenuated NF-κB p65 response to Tumor Necrosis Factor α (TNFα) treatment. The degree of inhibition of the NF-κB response depended on the HS exposure time. Mathematical modeling of single cells indicated that individual crosstalk mechanisms differentially encode HS-mediated NF-κB responses while being consistent with the observed population-level responses. In particular "all-or-nothing" encoding mechanisms were involved in the HS-dependent regulation of the IKK activity and IκBα phosphorylation, while others involving transport were "analogue". In order to discriminate between these mechanisms, we used live-cell imaging of nuclear translocations of the NF-κB p65 subunit. The single cell responses exhibited "all-or-nothing" encoding. While most cells did not respond to TNFα stimulation after a 60 min HS, 27% showed responses similar to those not receiving HS. We further demonstrated experimentally and theoretically that the predicted inhibition of IKK activity was consistent with the observed HS-dependent depletion of the IKKα and IKKß subunits in whole cell lysates. However, a combination of "all-or-nothing" crosstalk mechanisms was required to completely recapitulate the single cell data. We postulate therefore that the heterogeneity of the single cell responses might be explained by the cell-intrinsic variability of HS-modulated IKK signaling. In summary, we show that high temperature modulates NF-κB responses in single cells in a complex and unintuitive manner, which needs to be considered in hyperthermia-based treatment strategies.


Assuntos
Resposta ao Choque Térmico/fisiologia , Modelos Biológicos , NF-kappa B/metabolismo , Linhagem Celular , Biologia Computacional , Simulação por Computador , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Quinase I-kappa B/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais , Análise de Célula Única , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
7.
ACS Nano ; 12(2): 1373-1389, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29286639

RESUMO

The interest in graphene and its translation into commercial products has been expanding at a high pace. Based on previously described pulmonary safety concerns for carbon nanomaterials, there is a great need to define parameters guiding interactions between graphene-based materials and the pulmonary system. The aim of the present study was to determine the importance of two critical parameters: lateral dimensions of the material and coating with proteins in relation to each other and their pulmonary impact. Endotoxin-free materials with distinct lateral dimensions, s-GO (50-200 nm) and l-GO (5-15 µm), were produced and thoroughly characterized. Exploiting intrinsic fluorescence of graphene oxide (GO) and using confocal live-cell imaging, the behavior of the cells in response to the material was visualized in real time. Although BEAS-2B cells internalized GO efficiently, l-GO was linked to higher plasma membrane interactions correlated with elevated reactive oxygen species (ROS) levels, pro-inflammatory response, and greater cytotoxicity, in agreement with the oxidative stress paradigm. For both GO types, the presence of serum alleviated lipid peroxidation of plasma membrane and decreased intracellular ROS levels. However, protein coating was not enough to entirely mitigate toxicity and inflammatory response induced by l-GO. In vitro results were validated in vivo, as l-GO was more prone to induce pulmonary granulomatous response in mice compared to s-GO. In conclusion, the lateral dimension of GO played a more important role than serum protein coating in determining biological responses to the material. It was also demonstrated that time-lapse imaging of live cells interacting with label-free GO sheets can be used as a tool to assess GO-induced cytotoxicity.


Assuntos
Grafite/química , Animais , Células Cultivadas , Grafite/farmacologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/análise , Espécies Reativas de Oxigênio/metabolismo
8.
Cell Syst ; 5(6): 646-653.e5, 2017 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-29153839

RESUMO

Transcription in eukaryotic cells occurs in gene-specific bursts or pulses of activity. Recent studies identified a spectrum of transcriptionally active "on-states," interspersed with periods of inactivity, but these "off-states" and the process of transcriptional deactivation are poorly understood. To examine what occurs during deactivation, we investigate the dynamics of switching between variable rates. We measured live single-cell expression of luciferase reporters from human growth hormone or human prolactin promoters in a pituitary cell line. Subsequently, we applied a statistical variable-rate model of transcription, validated by single-molecule FISH, to estimate switching between transcriptional rates. Under the assumption that transcription can switch to any rate at any time, we found that transcriptional activation occurs predominantly as a single switch, whereas deactivation occurs with graded, stepwise decreases in transcription rate. Experimentally altering cAMP signalling with forskolin or chromatin remodelling with histone deacetylase inhibitor modifies the duration of defined transcriptional states. Our findings reveal transcriptional activation and deactivation as mechanistically independent, asymmetrical processes.


Assuntos
Hormônio do Crescimento Humano/genética , Modelos Teóricos , Hipófise/fisiologia , Prolactina/genética , Transcrição Gênica , Animais , Linhagem Celular , AMP Cíclico/metabolismo , Feminino , Genes Reporter/genética , Histona Desacetilases/metabolismo , Humanos , Luciferases/genética , Regiões Promotoras Genéticas/genética , Ratos , Análise de Célula Única , Ativação Transcricional
9.
Sci Rep ; 7: 40981, 2017 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-28112187

RESUMO

Toll-like receptors (TLRs) are major players of the innate immune system. Once activated, they trigger a signalling cascade that leads to NF-κB translocation from the cytoplasm to the nucleus. Single cell analysis shows that NF-κB signalling dynamics are a critical determinant of transcriptional regulation. Moreover, the outcome of innate immune response is also affected by the cross-talk between TLRs and estrogen signalling. Here, we characterized the dynamics of TLR5 signalling, responsible for the recognition of flagellated bacteria, and those changes induced by estradiol in its signalling at the single cell level. TLR5 activation in MCF7 cells induced a single and sustained NF-κB translocation into the nucleus that resulted in high NF-κB transcription activity. The overall magnitude of NF-κB transcription activity was not influenced by the duration of the stimulus. No significant changes are observed in the dynamics of NF-κB translocation to the nucleus when MCF7 cells are incubated with estradiol. However, estradiol significantly decreased NF-κB transcriptional activity while increasing TLR5-mediated AP-1 transcription. The effect of estradiol on transcriptional activity was dependent on the estrogen receptor activated. This fine tuning seems to occur mainly in the nucleus at the transcription level rather than affecting the translocation of the NF-κB transcription factor.


Assuntos
Estradiol/metabolismo , Estrogênios/metabolismo , Flagelina/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Receptor 5 Toll-Like/metabolismo , Humanos , Células MCF-7 , NF-kappa B/metabolismo , Transporte Proteico , Transdução de Sinais/efeitos dos fármacos , Análise de Célula Única , Transcrição Gênica
10.
Br J Cancer ; 115(8): 983-992, 2016 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-27584665

RESUMO

BACKGROUND: PERP (p53 apoptosis effector related to PMP-22), a transcriptional target of p53, is downregulated and contributes to the impairment of apoptosis in uveal melanoma (UM). Intriguingly, PERP is not induced in UM despite functional p53. p63, located on chromosome 3, which is characteristically altered in high-risk UM, can transactivate PERP. Here, we determine the functional role of p63 expression in the initiation of p53/PERP-mediated apoptosis in UM. METHODS: PERP expression was monitored by quantitative PCR (qPCR) and immunoblotting in UM cell lines treated with DNA-damaging agents. The functional role of p63 was assessed by transient expression of p63-turbo GFP (p63-tGFP) in the apoptosis- resistant, 3q-deficient OCM-1 cells. Expression and localisation of p63, PERP and p53, and induction of apoptosis were characterised by qPCR, immunoblotting and live cell confocal microscopy. RESULTS: PERP expression was significantly downregulated in all UM cell lines. DNA-damaging treatments failed to induce apoptosis and activate PERP in OCM-1 cells, which displayed non-functional levels of p63. Expression of p63-tGFP induced apoptosis with marked increase in PERP expression and associated p53 accumulation. CONCLUSIONS: Lack of p63 contributes to reduced PERP levels and impaired p53-mediated apoptosis in UM. p63 expression is required for PERP-mediated apoptosis in UM.


Assuntos
Apoptose/fisiologia , Melanoma/patologia , Fatores de Transcrição/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Neoplasias Uveais/patologia , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Linhagem Celular Tumoral , Dano ao DNA , Regulação Neoplásica da Expressão Gênica , Humanos , Immunoblotting , Melanoma/genética , Melanoma/metabolismo , Microscopia Confocal , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Recombinantes de Fusão/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética , Ativação Transcricional , Proteínas Supressoras de Tumor/biossíntese , Proteínas Supressoras de Tumor/genética , Raios Ultravioleta , Neoplasias Uveais/genética , Neoplasias Uveais/metabolismo
11.
Nat Commun ; 7: 12057, 2016 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-27381163

RESUMO

Cells respond dynamically to pulsatile cytokine stimulation. Here we report that single, or well-spaced pulses of TNFα (>100 min apart) give a high probability of NF-κB activation. However, fewer cells respond to shorter pulse intervals (<100 min) suggesting a heterogeneous refractory state. This refractory state is established in the signal transduction network downstream of TNFR and upstream of IKK, and depends on the level of the NF-κB system negative feedback protein A20. If a second pulse within the refractory phase is IL-1ß instead of TNFα, all of the cells respond. This suggests a mechanism by which two cytokines can synergistically activate an inflammatory response. Gene expression analyses show strong correlation between the cellular dynamic response and NF-κB-dependent target gene activation. These data suggest that refractory states in the NF-κB system constitute an inherent design motif of the inflammatory response and we suggest that this may avoid harmful homogenous cellular activation.


Assuntos
Interleucina-1beta/farmacologia , Inibidor de NF-kappaB alfa/genética , NF-kappa B/genética , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Transdução de Sinais/imunologia , Fator de Necrose Tumoral alfa/farmacologia , Linhagem Celular Tumoral , Retroalimentação Fisiológica , Regulação da Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/imunologia , Humanos , Quinase I-kappa B/genética , Quinase I-kappa B/imunologia , Proteínas Luminescentes/genética , Proteínas Luminescentes/imunologia , Inibidor de NF-kappaB alfa/imunologia , NF-kappa B/imunologia , Neurônios , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/imunologia , Receptores Tipo I de Fatores de Necrose Tumoral/imunologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/antagonistas & inibidores , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/genética , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/imunologia , Proteína Vermelha Fluorescente
12.
Elife ; 52016 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-27185527

RESUMO

Dynamic cellular systems reprogram gene expression to ensure appropriate cellular fate responses to specific extracellular cues. Here we demonstrate that the dynamics of Nuclear Factor kappa B (NF-κB) signalling and the cell cycle are prioritised differently depending on the timing of an inflammatory signal. Using iterative experimental and computational analyses, we show physical and functional interactions between NF-κB and the E2 Factor 1 (E2F-1) and E2 Factor 4 (E2F-4) cell cycle regulators. These interactions modulate the NF-κB response. In S-phase, the NF-κB response was delayed or repressed, while cell cycle progression was unimpeded. By contrast, activation of NF-κB at the G1/S boundary resulted in a longer cell cycle and more synchronous initial NF-κB responses between cells. These data identify new mechanisms by which the cellular response to stress is differentially controlled at different stages of the cell cycle.


Assuntos
Ciclo Celular , Proliferação de Células , Fator de Transcrição E2F1/metabolismo , Fator de Transcrição E2F4/metabolismo , Imunidade Inata , NF-kappa B/metabolismo , Transdução de Sinais , Linhagem Celular , Humanos
13.
Methods Mol Biol ; 1417: 75-88, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27221482

RESUMO

The pro-inflammatory cytokine interleukin (IL)-1ß is an important mediator of the inflammatory response. In order to perform its role in the inflammatory cascade, IL-1ß must be secreted from the cell, yet it lacks a signal peptide that is required for conventional secretion, and the exact mechanism of release remains undefined. Conventional biochemical methods have limited the investigation into the processes involved in IL-1ß secretion to population dynamics, yet heterogeneity between cells has been observed at a single-cell level. Here, greater sensitivity is achieved with the use of a newly developed vector that codes for a fluorescently labelled version of IL-1ß. Combining this with real-time single-cell confocal microscopy using the methods described here, we have developed an effective protocol for investigating the mechanisms of IL-1ß secretion and the testing of the hypothesis that IL-1ß secretion requires membrane permeabilisation.


Assuntos
Interleucina-1beta/metabolismo , Macrófagos/citologia , Análise de Célula Única/métodos , Animais , Células Cultivadas , Macrófagos/metabolismo , Camundongos , Microscopia Confocal , Transdução de Sinais
14.
Mol Endocrinol ; 30(2): 189-200, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26691151

RESUMO

The use of bacterial artificial chromosome (BAC) reporter constructs in molecular physiology enables the inclusion of large sections of flanking DNA, likely to contain regulatory elements and enhancers regions that contribute to the transcriptional output of a gene. Using BAC recombineering, we have manipulated a 160-kb human prolactin luciferase (hPRL-Luc) BAC construct and mutated the previously defined proximal estrogen response element (ERE) located -1189 bp relative to the transcription start site, to assess its involvement in the estrogen responsiveness of the entire hPRL locus. We found that GH3 cell lines stably expressing Luc under control of the ERE-mutated hPRL promoter (ERE-Mut) displayed a dramatically reduced transcriptional response to 17ß-estradiol (E2) treatment compared with cells expressing Luc from the wild-type (WT) ERE hPRL-Luc promoter (ERE-WT). The -1189 ERE controls not only the response to E2 treatment but also the acute transcriptional response to TNFα, which was abolished in ERE-Mut cells. ERE-WT cells displayed a biphasic transcriptional response after TNFα treatment, the acute phase of which was blocked after treatment with the estrogen receptor antagonist 4-hydroxy-tamoxifen. Unexpectedly, we show the oscillatory characteristics of hPRL promoter activity in individual living cells were unaffected by disruption of this crucial response element, real-time bioluminescence imaging showed that transcription cycles were maintained, with similar cycle lengths, in ERE-WT and ERE-Mut cells. These data suggest the -1189 ERE is the dominant response element involved in the hPRL transcriptional response to both E2 and TNFα and, crucially, that cycles of hPRL promoter activity are independent of estrogen receptor binding.


Assuntos
Estrogênios/genética , Estrogênios/farmacologia , Prolactina/genética , Elementos de Resposta/genética , Transcrição Gênica/efeitos dos fármacos , Sequência de Bases , Linhagem Celular , Estradiol/farmacologia , Humanos , Luciferases/metabolismo , Dados de Sequência Molecular , Proteínas Mutantes/metabolismo , Mutação/genética , Ligação Proteica/efeitos dos fármacos , Receptores de Estrogênio/metabolismo , Fatores de Tempo , Fator de Necrose Tumoral alfa/farmacologia
15.
Proc Natl Acad Sci U S A ; 112(17): 5479-84, 2015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25847991

RESUMO

The glucocorticoid receptor (GR) is a member of the nuclear receptor superfamily, which controls programs regulating cell proliferation, differentiation, and apoptosis. We have identified an unexpected role for GR in mitosis. We discovered that specifically modified GR species accumulate at the mitotic spindle during mitosis in a distribution that overlaps with Aurora kinases. We found that Aurora A was required to mediate mitosis-driven GR phosphorylation, but not recruitment of GR to the spindle. GR was necessary for mitotic progression, with increased time to complete mitosis, frequency of mitotic aberrations, and death in mitosis observed following GR knockdown. Complementation studies revealed an essential role for the GR ligand-binding domain, but no clear requirement for ligand binding in regulating chromosome segregation. The GR N-terminal domain, and specifically phosphosites S203 and S211, were not required. Reduced GR expression results in a cell cycle phenotype, with isolated cells from mouse and human subjects showing changes in chromosome content over prolonged passage. Furthermore, GR haploinsufficient mice have an increased incidence of tumor formation, and, strikingly, these tumors are further depleted for GR, implying additional GR loss as a consequence of cell transformation. We identified reduced GR expression in a panel of human liver, lung, prostate, colon, and breast cancers. We therefore reveal an unexpected role for the GR in promoting accurate chromosome segregation during mitosis, which is causally linked to tumorigenesis, making GR an authentic tumor suppressor gene.


Assuntos
Transformação Celular Neoplásica/metabolismo , Segregação de Cromossomos , Regulação Neoplásica da Expressão Gênica , Neoplasias/metabolismo , Receptores de Glucocorticoides/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Humanos , Camundongos , Camundongos Mutantes , Mitose/genética , Neoplasias/genética , Neoplasias/patologia , Estrutura Terciária de Proteína , Receptores de Glucocorticoides/genética , Células Tumorais Cultivadas , Proteínas Supressoras de Tumor/genética
16.
J Biol Chem ; 289(9): 5549-64, 2014 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-24394419

RESUMO

Intracellular signaling involving hypoxia-inducible factor (HIF) controls the adaptive responses to hypoxia. There is a growing body of evidence demonstrating that intracellular signals encode temporal information. Thus, the dynamics of protein levels, as well as protein quantity and/or localization, impacts on cell fate. We hypothesized that such temporal encoding has a role in HIF signaling and cell fate decisions triggered by hypoxic conditions. Using live cell imaging in a controlled oxygen environment, we observed transient 3-h pulses of HIF-1α and -2α expression under continuous hypoxia. We postulated that the well described prolyl hydroxylase (PHD) oxygen sensors and HIF negative feedback regulators could be the origin of the pulsatile HIF dynamics. We used iterative mathematical modeling and experimental analysis to scrutinize which parameter of the PHD feedback could control HIF timing and we probed for the functional redundancy between the three main PHD proteins. We identified PHD2 as the main PHD responsible for HIF peak duration. We then demonstrated that this has important consequences, because the transient nature of the HIF pulse prevents cell death by avoiding transcription of p53-dependent pro-apoptotic genes. We have further shown the importance of considering HIF dynamics for coupling mathematical models by using a described HIF-p53 mathematical model. Our results indicate that the tight control of HIF transient dynamics has important functional consequences on the cross-talk with key signaling pathways controlling cell survival, which is likely to impact on HIF targeting strategies for hypoxia-associated diseases such as tumor progression and ischemia.


Assuntos
Apoptose/fisiologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Transdução de Sinais/fisiologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Hipóxia Celular/fisiologia , Sobrevivência Celular/fisiologia , Células HeLa , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
17.
PLoS One ; 7(9): e45088, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23024798

RESUMO

Mcl-1 is an anti-apoptotic member of the Bcl-2 family that plays a key role in normal development, but also in pathologies such as cancer. It has some unusual properties compared to other anti-apoptotic members of the Bcl-2 family, and its expression and function are dynamically regulated by a variety of post-transcriptional and post-translational processes. Of note, Mcl-1 protein has a very short half life, and its stability and function may be regulated by reversible phosphorylation. There is also evidence to suggest that it may be localized to different subcellular compartments. The aim of this work was to determine whether residues within the PEST region of Mcl-1 that may undergo reversible phosphorylation, also regulate its subcellular distribution. We show that EGFP:Mcl-1 localizes mainly to the mitochondria of HeLa cells, with some additional cytoplasmic and nuclear localization. The mutations, S64A, S64E, S121A, S159A, T163A and T163E did not significantly affect the localization of Mcl-1. However, mutation of Ser162 to the phospho-null residue, Alanine resulted in an essentially nuclear localization, with some cytoplasmic but no mitochondrial localization. This mutant Mcl-1 protein, S162A, showed significantly decreased stability and it decreased the ability to protect against Bak-induced apoptosis. These data identify a new molecular determinant of Mcl-1 function, localization and stability that may be important for understanding the role of this protein in disease.


Assuntos
Apoptose/genética , Mitocôndrias/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Linhagem Celular , Códon , Humanos , Mutação , Proteína de Sequência 1 de Leucemia de Células Mieloides , Estabilidade Proteica , Transporte Proteico , Serina
18.
Chem Commun (Camb) ; 47(29): 8253-5, 2011 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-21709910

RESUMO

We describe the first example of a tri-phasic oil-in-water-in-air 'dry water emulsion'. The method combines highly stable oil-in-water emulsions prepared using branched copolymer surfactants, with aqueous droplet encapsulation using 'dry water' technology.


Assuntos
Composição de Medicamentos , Emulsões/química , Óleos/química , Água/química , Ar , Concentração de Íons de Hidrogênio , Polímeros/química , Dióxido de Silício/química , Tensoativos/química
19.
Ann Rheum Dis ; 70(2): 366-72, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21068092

RESUMO

OBJECTIVES: Systemic sclerosis (SSc) is a connective tissue disease associated with significant morbidity and mortality and generally inadequate treatment. Endothelial cell activation and apoptosis are thought to be pivotal in the pathogenesis of this disease, but the mechanisms that mediate this remain unknown. METHODS: Human dermal microvascular endothelial cells were cultured with healthy control neutrophils in the presence of 25% healthy control or SSc serum for 24 h. Apoptosis was measured by annexin V-FITC binding and endothelial cell activation was measured using an allophycocyanin-conjugated E-selectin antibody. Fluorescence was quantified and localised using confocal microscopy. RESULTS: SSc serum resulted in significantly increased apoptosis (p=0.006) and E-selectin expression (p=0.00004) in endothelial cells compared with control serum, effects that were critically dependent on the presence of neutrophils. Recombinant interleukin 6 (IL-6) reproduced these findings. Immunodepletion of IL-6 and the use of an IL-6 neutralising antibody decreased the effect of SSc serum on E-selectin expression. Soluble gp130, which specifically blocks IL-6 trans-signalling, negated the effect of SSc serum on both E-selectin expression and apoptosis. CONCLUSIONS: SSc serum induces endothelial cell activation and apoptosis in endothelial cell-neutrophil co-cultures, mediated largely by IL-6 and dependent on the presence of neutrophils. Together with other pathologically relevant effects of IL-6, these data justify further exploration of IL-6 as a therapeutic target in SSc.


Assuntos
Apoptose/fisiologia , Interleucina-6/fisiologia , Escleroderma Sistêmico/sangue , Células Cultivadas , Técnicas de Cocultura , Selectina E/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Humanos , Interleucina-6/farmacologia , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Proteínas Recombinantes/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Pele/irrigação sanguínea
20.
Cytometry A ; 77(12): 1137-47, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21069796

RESUMO

An interactive method is proposed for complex cell segmentation, in particular of clustered cells. This article has two main contributions: First, we explore a hybrid combination of the random walk and the geodesic graph based methods for image segmentation and propose the novel concept of geodesic commute distance to classify pixels. The computation of geodesic commute distance requires an eigenvector decomposition of the weighted Laplacian matrix of a graph constructed from the image to be segmented. Second, by incorporating pairwise constraints from seeds into the algorithm, we present a novel method for eigenvector decomposition, namely a constrained density weighted Nyström method. Both visual and quantitative comparison with other semiautomatic algorithms including Voronoi-based segmentation, grow cut, graph cuts, random walk, and geodesic method are given to evaluate the performance of the proposed method, which is a powerful tool for quantitative analysis of clustered cell images in live cell imaging.


Assuntos
Algoritmos , Separação Celular/métodos , Linhagem Celular Tumoral , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA