RESUMO
BACKGROUND: Changes in brain structure and cognitive decline occur in Chronic Obstructive Pulmonary Disease (COPD). They also occur with smoking and coronary artery disease (CAD), but it is unclear whether a common mechanism is responsible. METHODS: Brain MRI markers of brain structure were tested for association with disease markers in other organs. Where possible, principal component analysis (PCA) was used to group markers within organ systems into composite markers. Univariate relationships between brain structure and the disease markers were explored using hierarchical regression and then entered into multivariable regression models. RESULTS: 100 participants were studied (53 COPD, 47 CAD). PCA identified two brain components: brain tissue volumes and white matter microstructure, and six components from other organ systems: respiratory function, plasma lipids, blood pressure, glucose dysregulation, retinal vessel calibre and retinal vessel tortuosity. Several markers could not be grouped into components and were analysed as single variables, these included brain white matter hyperintense lesion (WMH) volume. Multivariable regression models showed that less well organised white matter microstructure was associated with lower respiratory function (p = 0.028); WMH volume was associated with higher blood pressure (p = 0.036) and higher C-Reactive Protein (p = 0.011) and lower brain tissue volume was associated with lower cerebral blood flow (p<0.001) and higher blood pressure (p = 0.001). Smoking history was not an independent correlate of any brain marker. CONCLUSIONS: Measures of brain structure were associated with a range of markers of disease, some of which appeared to be common to both COPD and CAD. No single common pathway was identified, but the findings suggest that brain changes associated with smoking-related diseases may be due to vascular, respiratory, and inflammatory changes.
Assuntos
Encéfalo/anatomia & histologia , Encéfalo/fisiopatologia , Fumar Tabaco/efeitos adversos , Idoso , Biomarcadores/metabolismo , Encéfalo/metabolismo , Proteína C-Reativa , Circulação Cerebrovascular/efeitos dos fármacos , Cognição/efeitos dos fármacos , Cognição/fisiologia , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/fisiopatologia , Doença da Artéria Coronariana/fisiopatologia , Feminino , Cabeça , Humanos , Hipertensão , Leucoaraiose/fisiopatologia , Masculino , Pessoa de Meia-Idade , Neuroimagem/métodos , Análise de Componente Principal , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Fumar Tabaco/fisiopatologia , Substância Branca/fisiopatologiaRESUMO
To enable application of non-Gaussian diffusion magnetic resonance imaging (dMRI) techniques in large-scale clinical trials and facilitate translation to clinical practice there is a requirement for fast, high contrast, techniques that are sensitive to changes in tissue structure which provide diagnostic signatures at the early stages of disease. Here we describe a new way to compress the acquisition of multi-shell b-value diffusion data, Quasi-Diffusion MRI (QDI), which provides a probe of subvoxel tissue complexity using short acquisition times (1-4 âmin). We also describe a coherent framework for multi-directional diffusion gradient acquisition and data processing that allows computation of rotationally invariant quasi-diffusion tensor imaging (QDTI) maps. QDI is a quantitative technique that is based on a special case of the Continuous Time Random Walk model of diffusion dynamics and assumes the presence of non-Gaussian diffusion properties within tissue microstructure. QDI parameterises the diffusion signal attenuation according to the rate of decay (i.e. diffusion coefficient, D in mm2 s-1) and the shape of the power law tail (i.e. the fractional exponent, α). QDI provides analogous tissue contrast to Diffusional Kurtosis Imaging (DKI) by calculation of normalised entropy of the parameterised diffusion signal decay curve, Hn, but does so without the limitations of a maximum b-value. We show that QDI generates images with superior tissue contrast to conventional diffusion imaging within clinically acceptable acquisition times of between 84 and 228 âs. We show that QDI provides clinically meaningful images in cerebral small vessel disease and brain tumour case studies. Our initial findings suggest that QDI may be added to routine conventional dMRI acquisitions allowing simple application in clinical trials and translation to the clinical arena.
Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Doenças de Pequenos Vasos Cerebrais/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética/métodos , Modelos Teóricos , Neuroimagem/métodos , Substância Branca/diagnóstico por imagem , Adulto , Idoso , Imagem de Difusão por Ressonância Magnética/normas , Imagem de Tensor de Difusão/métodos , Imagem de Tensor de Difusão/normas , Feminino , Humanos , Masculino , Neuroimagem/normas , Adulto JovemRESUMO
Background: Brain damage and cardiovascular disease are extra-pulmonary manifestations of chronic obstructive pulmonary disease (COPD). Cardiovascular risk factors and smoking are contributors to neurodegeneration. This study investigates whether there is a specific, COPD-related deterioration in brain structure and function independent of cardiovascular risk factors and smoking. Materials and methods: Neuroimaging and clinical markers of brain structure (micro- and macro-) and function (cognitive function and mood) were compared between 27 stable COPD patients (age: 63.0±9.1 years, 59.3% male, forced expiratory volume in 1 second [FEV1]: 58.1±18.0% pred.) and 23 non-COPD controls with >10 pack years smoking (age: 66.6±7.5 years, 52.2% male, FEV1: 100.6±19.1% pred.). Clinical relationships and group interactions with brain structure were also tested. All statistical analyses included correction for cardiovascular risk factors, smoking, and aortic stiffness. Results: COPD patients had significantly worse cognitive function (p=0.011), lower mood (p=0.046), and greater gray matter atrophy (p=0.020). In COPD patients, lower mood was associated with markers of white matter (WM) microstructural damage (p<0.001), and lower lung function (FEV1/forced vital capacity and FEV1) with markers of both WM macro (p=0.047) and microstructural damage (p=0.028). Conclusion: COPD is associated with both structural (gray matter atrophy) and functional (worse cognitive function and mood) brain changes that cannot be explained by measures of cardiovascular risk, aortic stiffness, or smoking history alone. These results have important implications to guide the development of new interventions to prevent or delay progression of neuropsychiatric comorbidities in COPD. Relationships found between mood and microstructural abnormalities suggest that in COPD, anxiety, and depression may occur secondary to WM damage. This could be used to better understand disabling symptoms such as breathlessness, improve health status, and reduce hospital admissions.
Assuntos
Encefalopatias/etiologia , Encéfalo , Doenças Cardiovasculares/etiologia , Doença Pulmonar Obstrutiva Crônica/etiologia , Fumar/efeitos adversos , Afeto , Idoso , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Encefalopatias/diagnóstico por imagem , Encefalopatias/fisiopatologia , Encefalopatias/psicologia , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/fisiopatologia , Estudos de Casos e Controles , Cognição , Feminino , Volume Expiratório Forçado , Humanos , Pulmão/fisiopatologia , Masculino , Pessoa de Meia-Idade , Degeneração Neural , Neuroimagem/métodos , Valor Preditivo dos Testes , Prognóstico , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Fatores de Risco , Rigidez Vascular , Capacidade VitalRESUMO
BACKGROUND: Mild cognitive impairment is a common systemic manifestation of chronic obstructive pulmonary disease (COPD). However, its pathophysiological origins are not understood. Since, cognitive function relies on efficient communication between distributed cortical and subcortical regions, we investigated whether people with COPD have disruption in white matter connectivity. METHODS: Structural networks were constructed for 30 COPD patients (aged 54-84 years, 57% male, FEV1 52.5% pred.) and 23 controls (aged 51-81 years, 48% Male). Networks comprised 90 grey matter regions (nodes) interconnected by white mater fibre tracts traced using deterministic tractography (edges). Edges were weighted by the number of streamlines adjusted for a) streamline length and b) end-node volume. White matter connectivity was quantified using global and nodal graph metrics which characterised the networks connection density, connection strength, segregation, integration, nodal influence and small-worldness. Between-group differences in white matter connectivity and within-group associations with cognitive function and disease severity were tested. RESULTS: COPD patients' brain networks had significantly lower global connection strength (p = 0.03) and connection density (p = 0.04). There was a trend towards COPD patients having a reduction in nodal connection density and connection strength across the majority of network nodes but this only reached significance for connection density in the right superior temporal gyrus (p = 0.02) and did not survive correction for end-node volume. There were no other significant global or nodal network differences or within-group associations with disease severity or cognitive function. CONCLUSION: COPD brain networks show evidence of damage compared to controls with a reduced number and strength of connections. This loss of connectivity was not sufficient to disrupt the overall efficiency of network organisation, suggesting that it has redundant capacity that makes it resilient to damage, which may explain why cognitive dysfunction is not severe. This might also explain why no direct relationships could be found with cognitive measures. Smoking and hypertension are known to have deleterious effects on the brain. These confounding effects could not be excluded.
Assuntos
Disfunção Cognitiva/etiologia , Disfunção Cognitiva/fisiopatologia , Conectoma , Doença Pulmonar Obstrutiva Crônica/complicações , Substância Branca/fisiologia , Idoso , Idoso de 80 Anos ou mais , Cognição , Disfunção Cognitiva/psicologia , Imagem de Tensor de Difusão , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Testes de Função Respiratória , Índice de Gravidade de Doença , Substância Branca/diagnóstico por imagemRESUMO
BACKGROUND: Brain pathology is relatively unexplored in chronic obstructive pulmonary disease (COPD). This study is a comprehensive investigation of grey matter (GM) and white matter (WM) changes and how these relate to disease severity and cognitive function. METHODS: T1-weighted and fluid-attenuated inversion recovery images were acquired for 31 stable COPD patients (FEV1 52.1% pred., PaO2 10.1 kPa) and 24 age, gender-matched controls. T1-weighted images were segmented into GM, WM and cerebrospinal fluid (CSF) tissue classes using a semi-automated procedure optimised for use with this cohort. This procedure allows, cohort-specific anatomical features to be captured, white matter lesions (WMLs) to be identified and includes a tissue repair step to correct for misclassification caused by WMLs. Tissue volumes and cortical thickness were calculated from the resulting segmentations. Additionally, a fully-automated pipeline was used to calculate localised cortical surface and gyrification. WM and GM tissue volumes, the tissue volume ratio (indicator of atrophy), average cortical thickness, and the number, size, and volume of white matter lesions (WMLs) were analysed across the whole-brain and regionally - for each anatomical lobe and the deep-GM. The hippocampus was investigated as a region-of-interest. Localised (voxel-wise and vertex-wise) variations in cortical gyrification, GM density and cortical thickness, were also investigated. Statistical models controlling for age and gender were used to test for between-group differences and within-group correlations. Robust statistical approaches ensured the family-wise error rate was controlled in regional and local analyses. RESULTS: There were no significant differences in global, regional, or local measures of GM between patients and controls, however, patients had an increased volume (p = 0.02) and size (p = 0.04) of WMLs. In patients, greater normalised hippocampal volume positively correlated with exacerbation frequency (p = 0.04), and greater WML volume was associated with worse episodic memory (p = 0.05). A negative relationship between WML and FEV1 % pred. approached significance (p = 0.06). CONCLUSIONS: There was no evidence of cerebral atrophy within this cohort of stable COPD patients, with moderate airflow obstruction. However, there were indications of WM damage consistent with an ischaemic pathology. It cannot be concluded whether this represents a specific COPD, or smoking-related, effect.