Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Hum Genet ; 110(8): 1394-1413, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37467750

RESUMO

DExD/H-box RNA helicases (DDX/DHX) are encoded by a large paralogous gene family; in a subset of these human helicase genes, pathogenic variation causes neurodevelopmental disorder (NDD) traits and cancer. DHX9 encodes a BRCA1-interacting nuclear helicase regulating transcription, R-loops, and homologous recombination and exhibits the highest mutational constraint of all DDX/DHX paralogs but remains unassociated with disease traits in OMIM. Using exome sequencing and family-based rare-variant analyses, we identified 20 individuals with de novo, ultra-rare, heterozygous missense or loss-of-function (LoF) DHX9 variant alleles. Phenotypes ranged from NDDs to the distal symmetric polyneuropathy axonal Charcot-Marie-Tooth disease (CMT2). Quantitative Human Phenotype Ontology (HPO) analysis demonstrated genotype-phenotype correlations with LoF variants causing mild NDD phenotypes and nuclear localization signal (NLS) missense variants causing severe NDD. We investigated DHX9 variant-associated cellular phenotypes in human cell lines. Whereas wild-type DHX9 was restricted to the nucleus, NLS missense variants abnormally accumulated in the cytoplasm. Fibroblasts from an individual with an NLS variant also showed abnormal cytoplasmic DHX9 accumulation. CMT2-associated missense variants caused aberrant nucleolar DHX9 accumulation, a phenomenon previously associated with cellular stress. Two NDD-associated variants, p.Gly411Glu and p.Arg761Gln, altered DHX9 ATPase activity. The severe NDD-associated variant p.Arg141Gln did not affect DHX9 localization but instead increased R-loop levels and double-stranded DNA breaks. Dhx9-/- mice exhibited hypoactivity in novel environments, tremor, and sensorineural hearing loss. All together, these results establish DHX9 as a critical regulator of mammalian neurodevelopment and neuronal homeostasis.


Assuntos
Doença de Charcot-Marie-Tooth , Transtornos do Neurodesenvolvimento , Animais , Humanos , Camundongos , Linhagem Celular , Doença de Charcot-Marie-Tooth/genética , RNA Helicases DEAD-box/genética , Diclorodifenil Dicloroetileno , DNA Helicases , Mamíferos , Proteínas de Neoplasias/genética
2.
Am J Med Genet A ; 182(5): 1053-1065, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32083401

RESUMO

Pathogenic variants in KMT2D, which encodes lysine specific methyltransferase 2D, cause autosomal dominant Kabuki syndrome, associated with distinctive dysmorphic features including arched eyebrows, long palpebral fissures with eversion of the lower lid, large protuberant ears, and fetal finger pads. Most disease-causing variants identified to date are putative loss-of-function alleles, although 15-20% of cases are attributed to missense variants. We describe here four patients (including one previously published patient) with de novo KMT2D missense variants and with shared but unusual clinical findings not typically seen in Kabuki syndrome, including athelia (absent nipples), choanal atresia, hypoparathyroidism, delayed or absent pubertal development, and extreme short stature. These individuals also lack the typical dysmorphic facial features found in Kabuki syndrome. Two of the four patients had severe interstitial lung disease. All of these variants cluster within a 40-amino-acid region of the protein that is located just N-terminal of an annotated coiled coil domain. These findings significantly expand the phenotypic spectrum of features associated with variants in KMT2D beyond those seen in Kabuki syndrome and suggest a possible new underlying disease mechanism for these patients.


Assuntos
Anormalidades Múltiplas/genética , Mama/anormalidades , Anormalidades Congênitas/genética , Proteínas de Ligação a DNA/genética , Face/anormalidades , Predisposição Genética para Doença , Doenças Hematológicas/genética , Proteínas de Neoplasias/genética , Doenças Vestibulares/genética , Anormalidades Múltiplas/diagnóstico por imagem , Anormalidades Múltiplas/patologia , Adolescente , Adulto , Mama/diagnóstico por imagem , Mama/fisiopatologia , Doenças Mamárias , Criança , Anormalidades Congênitas/diagnóstico por imagem , Anormalidades Congênitas/fisiopatologia , Face/diagnóstico por imagem , Face/patologia , Feminino , Doenças Hematológicas/diagnóstico por imagem , Doenças Hematológicas/patologia , Humanos , Mutação com Perda de Função/genética , Masculino , Mutação/genética , Fenótipo , Doenças Vestibulares/diagnóstico por imagem , Doenças Vestibulares/patologia , Sequenciamento do Exoma , Adulto Jovem
3.
Artigo em Inglês | MEDLINE | ID: mdl-29970384

RESUMO

Recent evidence has implicated EFL1 in a phenotype overlapping Shwachman-Diamond syndrome (SDS), with the functional interplay between EFL1 and the previously known causative gene SBDS accounting for the similarity in clinical features. Relatively little is known about the phenotypes associated with pathogenic variants in the EFL1 gene, but the initial indication was that phenotypes may be more severe, when compared with SDS. We report a pediatric patient who presented with a metaphyseal dysplasia and was found to have biallelic variants in EFL1 on reanalysis of trio whole-exome sequencing data. The variant had not been initially reported because of the research laboratory's focus on de novo variants. Subsequent phenotyping revealed variability in her manifestations. Although her metaphyseal abnormalities were more severe than in the original reported cohort with EFL1 variants, the bone marrow abnormalities were generally mild, and there was equivocal evidence for pancreatic insufficiency. Despite the limited number of reported patients, variants in EFL1 appear to cause a broader spectrum of symptoms that overlap with those seen in SDS. Our report adds to the evidence of EFL1 being associated with an SDS-like phenotype and provides information adding to our understanding of the phenotypic variability of this disorder. Our report also highlights the value of exome data reanalysis when a diagnosis is not initially apparent.


Assuntos
Doenças da Medula Óssea/genética , Insuficiência Pancreática Exócrina/genética , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/fisiologia , Lipomatose/genética , Adolescente , Doenças da Medula Óssea/diagnóstico , Insuficiência Pancreática Exócrina/diagnóstico , Feminino , Variação Genética/genética , Humanos , Lipomatose/diagnóstico , Mutação , Osteocondrodisplasias/genética , Osteocondrodisplasias/fisiopatologia , Fatores de Alongamento de Peptídeos , Fenótipo , Proteínas/genética , Ribonucleoproteína Nuclear Pequena U5 , Síndrome de Shwachman-Diamond , Sequenciamento do Exoma
4.
Genet Med ; 20(4): 464-469, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28914269

RESUMO

PurposeTo describe examples of missed pathogenic variants on whole-exome sequencing (WES) and the importance of deep phenotyping for further diagnostic testing.MethodsGuided by phenotypic information, three children with negative WES underwent targeted single-gene testing.ResultsIndividual 1 had a clinical diagnosis consistent with infantile systemic hyalinosis, although WES and a next-generation sequencing (NGS)-based ANTXR2 test were negative. Sanger sequencing of ANTXR2 revealed a homozygous single base pair insertion, previously missed by the WES variant caller software. Individual 2 had neurodevelopmental regression and cerebellar atrophy, with no diagnosis on WES. New clinical findings prompted Sanger sequencing and copy number testing of PLA2G6. A novel homozygous deletion of the noncoding exon 1 (not included in the WES capture kit) was detected, with extension into the promoter, confirming the clinical suspicion of infantile neuroaxonal dystrophy. Individual 3 had progressive ataxia, spasticity, and magnetic resonance image changes of vanishing white matter leukoencephalopathy. An NGS leukodystrophy gene panel and WES showed a heterozygous pathogenic variant in EIF2B5; no deletions/duplications were detected. Sanger sequencing of EIF2B5 showed a frameshift indel, probably missed owing to failure of alignment.ConclusionThese cases illustrate potential pitfalls of WES/NGS testing and the importance of phenotype-guided molecular testing in yielding diagnoses.


Assuntos
Exoma , Estudos de Associação Genética , Predisposição Genética para Doença , Técnicas de Diagnóstico Molecular , Alelos , Biópsia , Criança , Pré-Escolar , Feminino , Estudos de Associação Genética/métodos , Doenças Genéticas Inatas/diagnóstico , Doenças Genéticas Inatas/genética , Genótipo , Humanos , Lactente , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Diagnóstico Molecular/normas , Fenótipo , Polimorfismo de Nucleotídeo Único , Doenças Raras/diagnóstico , Doenças Raras/genética , Sequenciamento do Exoma , Sequenciamento Completo do Genoma
5.
Epilepsia ; 58(3): 436-445, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28139826

RESUMO

OBJECTIVE: To analyze whether KCNQ2 R201C and R201H variants, which show atypical gain-of-function electrophysiologic properties in vitro, have a distinct clinical presentation and outcome. METHODS: Ten children with heterozygous, de novo KCNQ2 R201C or R201H variants were identified worldwide, using an institutional review board (IRB)-approved KCNQ2 patient registry and database. We reviewed medical records and, where possible, interviewed parents and treating physicians using a structured, detailed phenotype inventory focusing on the neonatal presentation and subsequent course. RESULTS: Nine patients had encephalopathy from birth and presented with prominent startle-like myoclonus, which could be triggered by sound or touch. In seven patients, electroencephalography (EEG) was performed in the neonatal period and showed a burst-suppression pattern. However, myoclonus did not have an EEG correlate. In many patients the paroxysmal movements were misdiagnosed as seizures. Seven patients developed epileptic spasms in infancy. In all patients, EEG showed a slow background and multifocal epileptiform discharges later in life. Other prominent features included respiratory dysfunction (perinatal respiratory failure and/or chronic hypoventilation), hypomyelination, reduced brain volume, and profound developmental delay. One patient had a later onset, and sequencing indicated that a low abundance (~20%) R201C variant had arisen by postzygotic mosaicism. SIGNIFICANCE: Heterozygous KCNQ2 R201C and R201H gain-of-function variants present with profound neonatal encephalopathy in the absence of neonatal seizures. Neonates present with nonepileptic myoclonus that is often misdiagnosed and treated as seizures. Prognosis is poor. This clinical presentation is distinct from the phenotype associated with loss-of-function variants, supporting the value of in vitro functional screening. These findings suggest that gain-of-function and loss-of-function variants need different targeted therapeutic approaches.


Assuntos
Canal de Potássio KCNQ2/genética , Mioclonia/genética , Polimorfismo de Nucleotídeo Único/genética , Espasmos Infantis/genética , Anticonvulsivantes/uso terapêutico , Arginina/genética , Pré-Escolar , Cisteína/genética , Eletroencefalografia , Feminino , Histidina/genética , Humanos , Lactente , Recém-Nascido , Imageamento por Ressonância Magnética , Masculino , Mioclonia/diagnóstico por imagem , Mioclonia/tratamento farmacológico , Mioclonia/fisiopatologia , Fenótipo , Sistema de Registros , Transtornos Respiratórios/etiologia , Transtornos Respiratórios/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA