Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur J Pharm Biopharm ; 197: 114213, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38346479

RESUMO

Neutral and positively charged archaeal ether lipids (AEL) have been studied for their utilization as novel delivery systems for pDNA, showing efficient immune response with a strong memory effect while lacking noticeable toxicity. Recent technological advances placed mRNA lipid nanoparticles (LNPs) at the forefront of next-generation delivery systems; however, no study has examined AELs in mRNA delivery yet. In this study, we investigated either a crude lipid extract or the purified tetraether lipid caldarchaeol from Sulfolobus acidocaldarius as potential novel excipients for mRNA LNPs. Depending on their molar share in the respective LNP, particle uptake, and mRNA expression levels could be increased by up to 10-fold in in vitro transfection experiments using both primary cell sources (HSMM) and established cell lines (Caco-2, C2C12) compared to a well-known reference formulation. This increased efficiency might be linked to a substantial effect on endosomal escape, indicating fusogenic and lyotropic features of AELs. This study shows the high value of archaeal ether lipids for mRNA delivery and provides a solid foundation for future in vivo experiments and further research.


Assuntos
Lipídeos , Nanopartículas , Humanos , Éter , Archaea , RNA Mensageiro/genética , Células CACO-2 , Lipossomos , Transfecção , Éteres , Etil-Éteres , RNA Interferente Pequeno
2.
J Biosci Bioeng ; 132(3): 310-320, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34175199

RESUMO

Owing to their self-renewal and multi-lineage differentiation capability, mesenchymal stem cells (MSCs) hold enormous potential in regenerative medicine. A prerequisite for a successful MSC therapy is the rigorous investigation of their function after in vitro cultivation. Damages introduced to mitochondria during cultivation adversely affect MSCs function and can determine their fate. While it has been shown that microtubules and vimentin intermediate filaments are important for mitochondrial dynamics and active mitochondrial transport within the cytoplasm of MSCs, the role of filamentous actin in this process has not been fully understood yet. To gain a deeper understanding of the interdependence between mitochondrial function and the cytoskeleton, we applied cytochalasin B to disturb the filamentous actin-based cytoskeleton of MSCs. In this study we combined conventional functional assays with a state-of-the-art oxygen sensor-integrated microfluidic device to investigate mitochondrial function. We demonstrated that cytochalasin B treatment at a dose of 16 µM led to a decrease in cell viability with high mitochondrial membrane potential, increased oxygen consumption rate, disturbed fusion and fission balance, nuclear extrusion and perinuclear accumulation of mitochondria. Treatment of MSCs for 48 h ultimately led to nuclear fragmentation, and activation of the intrinsic pathway of apoptotic cell death. Importantly, we could show that mitochondrial function of MSCs can efficiently recover from the damage to the filamentous actin-based cytoskeleton over a period of 24 h. As a result of our study, a causative connection between the filamentous actin-based cytoskeleton and mitochondrial dynamics was demonstrated.


Assuntos
Células-Tronco Mesenquimais , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Células Cultivadas , Citocalasina B/metabolismo , Citocalasina B/farmacologia , Citoesqueleto/metabolismo , Células-Tronco Mesenquimais/metabolismo , Microtúbulos/metabolismo , Mitocôndrias
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 237: 118388, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32361318

RESUMO

Glucose transport is key for cellular metabolism as well as physiological function and is maintained via passive facilitated and active sodium-glucose linked transport routes. Here, we present for the first time Fourier-transform infrared spectroscopy as a novel approach for quantification of apical-to-basolateral glucose transport of in vitro cell barrier models using liver, lung, intestinal and placental cancer cell lines. Results of our comparative study revealed that distinct differences could be observed upon subjection to transport inhibitors.


Assuntos
Glucose/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/fisiologia , Células CACO-2 , Citocalasina B/farmacologia , Impedância Elétrica , Feminino , Glucose/análise , Células HT29 , Células Hep G2 , Humanos , Floretina/farmacologia , Gravidez , Estudo de Prova de Conceito , Trofoblastos/metabolismo , Trofoblastos/patologia , Células Tumorais Cultivadas
4.
Cells Tissues Organs ; 203(5): 316-326, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28291964

RESUMO

It is crucial but challenging to keep physiologic conditions during the cultivation of 3D cell scaffold constructs for the optimization of 3D cell culture processes. Therefore, we demonstrate the benefits of a recently developed miniaturized perfusion bioreactor together with a specialized incubator system that allows for the cultivation of multiple samples while screening different conditions. Hence, a decellularized bone matrix was tested towards its suitability for 3D osteogenic differentiation under flow perfusion conditions. Subsequently, physiologic shear stress and hydrostatic pressure (HP) conditions were optimized for osteogenic differentiation of human mesenchymal stem cells (MSCs). X-ray computed microtomography and scanning electron microscopy (SEM) revealed a closed cell layer covering the entire matrix. Osteogenic differentiation assessed by alkaline phosphatase activity and SEM was found to be increased in all dynamic conditions. Furthermore, screening of different fluid shear stress (FSS) conditions revealed 1.5 mL/min (equivalent to ∼10 mPa shear stress) to be optimal. However, no distinct effect of HP compared to flow perfusion without HP on osteogenic differentiation was observed. Notably, throughout all experiments, cells cultivated under FSS or HP conditions displayed increased osteogenic differentiation, which underlines the importance of physiologic conditions. In conclusion, the bioreactor system was used for biomaterial testing and to develop and optimize a 3D cell culture process for the osteogenic differentiation of MSCs. Due to its versatility and higher throughput efficiency, we hypothesize that this bioreactor/incubator system will advance the development and optimization of a variety of 3D cell culture processes.


Assuntos
Reatores Biológicos , Técnicas de Cultura de Células/instrumentação , Células-Tronco Mesenquimais/citologia , Osteogênese , Perfusão/instrumentação , Materiais Biocompatíveis/química , Diferenciação Celular , Células Cultivadas , Desenho de Equipamento , Feminino , Humanos , Pressão Hidrostática , Pessoa de Meia-Idade , Porosidade , Engenharia Tecidual/instrumentação , Alicerces Teciduais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA