Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Transl Med ; 16(742): eadk3506, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598614

RESUMO

It has been presumed that rheumatoid arthritis (RA) joint pain is related to inflammation in the synovium; however, recent studies reveal that pain scores in patients do not correlate with synovial inflammation. We developed a machine-learning approach (graph-based gene expression module identification or GbGMI) to identify an 815-gene expression module associated with pain in synovial biopsy samples from patients with established RA who had limited synovial inflammation at arthroplasty. We then validated this finding in an independent cohort of synovial biopsy samples from patients who had early untreated RA with little inflammation. Single-cell RNA sequencing analyses indicated that most of these 815 genes were most robustly expressed by lining layer synovial fibroblasts. Receptor-ligand interaction analysis predicted cross-talk between human lining layer fibroblasts and human dorsal root ganglion neurons expressing calcitonin gene-related peptide (CGRP+). Both RA synovial fibroblast culture supernatant and netrin-4, which is abundantly expressed by lining fibroblasts and was within the GbGMI-identified pain-associated gene module, increased the branching of pain-sensitive murine CGRP+ dorsal root ganglion neurons in vitro. Imaging of solvent-cleared synovial tissue with little inflammation from humans with RA revealed CGRP+ pain-sensing neurons encasing blood vessels growing into synovial hypertrophic papilla. Together, these findings support a model whereby synovial lining fibroblasts express genes associated with pain that enhance the growth of pain-sensing neurons into regions of synovial hypertrophy in RA.


Assuntos
Artrite Reumatoide , Peptídeo Relacionado com Gene de Calcitonina , Humanos , Camundongos , Animais , Peptídeo Relacionado com Gene de Calcitonina/genética , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Artrite Reumatoide/complicações , Artrite Reumatoide/genética , Artrite Reumatoide/metabolismo , Membrana Sinovial/patologia , Inflamação/patologia , Fibroblastos/patologia , Dor/metabolismo , Expressão Gênica , Células Cultivadas
2.
medRxiv ; 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37662384

RESUMO

It has been presumed that rheumatoid arthritis (RA) joint pain is related to inflammation in the synovium; however, recent studies reveal that pain scores in patients do not correlate with synovial inflammation. We identified a module of 815 genes associated with pain, using a novel machine learning approach, Graph-based Gene expression Module Identification (GbGMI), in samples from patients with longstanding RA, but limited synovial inflammation at arthroplasty, and validated this finding in an independent cohort of synovial biopsy samples from early, untreated RA patients. Single-cell RNA-seq analyses indicated these genes were most robustly expressed by lining layer fibroblasts and receptor-ligand interaction analysis predicted robust lining layer fibroblast crosstalk with pain sensitive CGRP+ dorsal root ganglion sensory neurons. Netrin-4, which is abundantly expressed by lining fibroblasts and associated with pain, significantly increased the branching of pain-sensitive CGRP+ neurons in vitro . We conclude GbGMI is a useful method for identifying a module of genes that associate with a clinical feature of interest. Using this approach, we find that Netrin-4 is produced by synovial fibroblasts in the absence of inflammation and can enhance the outgrowth of CGRP+ pain sensitive nerve fibers. One Sentence Summary: Machine Learning reveals synovial fibroblast genes related to pain affect sensory nerve growth in Rheumatoid Arthritis addresses unmet clinical need.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA