Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
J Biol Chem ; 300(3): 105783, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38395309

RESUMO

Poly(ethylene terephthalate) (PET) is a major plastic polymer utilized in the single-use and textile industries. The discovery of PET-degrading enzymes (PETases) has led to an increased interest in the biological recycling of PET in addition to mechanical recycling. IsPETase from Ideonella sakaiensis is a candidate catalyst, but little is understood about its structure-function relationships with regards to PET degradation. To understand the effects of mutations on IsPETase productivity, we develop a directed evolution assay to identify mutations beneficial to PET film degradation at 30 °C. IsPETase also displays enzyme concentration-dependent inhibition effects, and surface crowding has been proposed as a causal phenomenon. Based on total internal reflectance fluorescence microscopy and adsorption experiments, IsPETase is likely experiencing crowded conditions on PET films. Molecular dynamics simulations of IsPETase variants reveal a decrease in active site flexibility in free enzymes and reduced probability of productive active site formation in substrate-bound enzymes under crowding. Hence, we develop a surface crowding model to analyze the biochemical effects of three hit mutations (T116P, S238N, S290P) that enhanced ambient temperature activity and/or thermostability. We find that T116P decreases susceptibility to crowding, resulting in higher PET degradation product accumulation despite no change in intrinsic catalytic rate. In conclusion, we show that a macromolecular crowding-based biochemical model can be used to analyze the effects of mutations on properties of PETases and that crowding behavior is a major property to be targeted for enzyme engineering for improved PET degradation.


Assuntos
Burkholderiales , Hidrolases , Polietilenotereftalatos , Hidrolases/química , Hidrolases/genética , Hidrolases/metabolismo , Polietilenotereftalatos/química , Polietilenotereftalatos/metabolismo , Reciclagem , Cinética , Burkholderiales/enzimologia , Modelos Químicos
3.
Front Immunol ; 12: 728694, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34646268

RESUMO

Monoclonal antibodies (mAbs) are an important class of therapeutics used to treat cancer, inflammation, and infectious diseases. Identifying highly developable mAb sequences in silico could greatly reduce the time and cost required for therapeutic mAb development. Here, we present position-specific scoring matrices (PSSMs) for antibody framework mutations developed using baseline human antibody repertoire sequences. Our analysis shows that human antibody repertoire-based PSSMs are consistent across individuals and demonstrate high correlations between related germlines. We show that mutations in existing therapeutic antibodies can be accurately predicted solely from baseline human antibody sequence data. We find that mAbs developed using humanized mice had more human-like FR mutations than mAbs originally developed by hybridoma technology. A quantitative assessment of entire framework regions of therapeutic antibodies revealed that there may be potential for improving the properties of existing therapeutic antibodies by incorporating additional mutations of high frequency in baseline human antibody repertoires. In addition, high frequency mutations in baseline human antibody repertoires were predicted in silico to reduce immunogenicity in therapeutic mAbs due to the removal of T cell epitopes. Several therapeutic mAbs were identified to have common, universally high-scoring framework mutations, and molecular dynamics simulations revealed the mechanistic basis for the evolutionary selection of these mutations. Our results suggest that baseline human antibody repertoires may be useful as predictive tools to guide mAb development in the future.


Assuntos
Anticorpos Monoclonais/genética , Desenvolvimento de Medicamentos , Epitopos de Linfócito T/genética , Cadeias Pesadas de Imunoglobulinas/genética , Região Variável de Imunoglobulina/genética , Mutação , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Análise Mutacional de DNA , Bases de Dados Genéticas , Aprovação de Drogas , Estabilidade de Medicamentos , Epitopos de Linfócito T/imunologia , Humanos , Cadeias Pesadas de Imunoglobulinas/imunologia , Cadeias Pesadas de Imunoglobulinas/uso terapêutico , Região Variável de Imunoglobulina/imunologia , Região Variável de Imunoglobulina/uso terapêutico , Modelos Genéticos , Simulação de Dinâmica Molecular , Estabilidade Proteica , Estados Unidos , United States Food and Drug Administration
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA