Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Invest Dermatol ; 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38086428

RESUMO

The immunologic drivers of cutaneous lupus erythematosus (CLE) and its clinical subtypes remain poorly understood. We sought to characterize the immune landscape of discoid lupus erythematosus and subacute CLE using multiplexed immunophenotyping. We found no significant differences in immune cell percentages between discoid lupus erythematosus and subacute CLE (P > .05) with the exception of an increase in TBK1 in discoid lupus erythematosus (P < .05). Unbiased clustering grouped subjects into 2 major clusters without respect to clinical subtype. Subjects with a history of smoking had increased percentages of neutrophils, disease activity, and endothelial granzyme B compared with nonsmokers. Despite previous assumptions, plasmacytoid dendritic cells (pDCs) did not stain for IFN-1. Skin-eluted and circulating pDCs from subjects with CLE expressed significantly less IFNα than healthy control pDCs upon toll-like receptor 7 stimulation ex vivo (P < .0001). These data suggest that discoid lupus erythematosus and subacute CLE have similar immune microenvironments in a multiplexed investigation. Our aggregated analysis of CLE revealed that smoking may modulate disease activity in CLE through neutrophils and endothelial granzyme B. Notably, our data suggest that pDCs are not the major producers of IFN-1 in CLE. Future in vitro studies to investigate the role of pDCs in CLE are needed.

3.
Artigo em Inglês | MEDLINE | ID: mdl-36057476

RESUMO

PURPOSE: Radiation-induced cerebrovascular toxicity is a well-documented sequelae that can be both life-altering and potentially fatal. We performed a meta-analysis of the relevant literature to create practical models for predicting the risk of cerebral vasculopathy after cranial irradiation. METHODS AND MATERIALS: A literature search was performed for studies reporting pediatric radiation therapy (RT) associated cerebral vasculopathy. When available, we used individual patient RT doses delivered to the Circle of Willis (CW) or optic chiasm (as a surrogate), as reported or digitized from original publications, to formulate a dose-response. A logistic fit and a Normal Tissue Complication Probability (NTCP) model was developed to predict future risk of cerebrovascular toxicity and stroke, respectively. This NTCP risk was assessed as a function of prescribed dose. RESULTS: The search identified 766 abstracts, 5 of which were used for modeling. We identified 101 of 3989 pediatric patients who experienced at least one cerebrovascular toxicity: transient ischemic attack, stroke, moyamoya, or arteriopathy. For a range of shorter follow-ups, as specified in the original publications (approximate attained ages of 17 years), our logistic fit model predicted the incidence of any cerebrovascular toxicity as a function of dose to the CW, or surrogate structure: 0.2% at 30 Gy, 1.3% at 45 Gy, and 4.4% at 54 Gy. At an attained age of 35 years, our NTCP model predicted a stroke incidence of 0.9% to 1.3%, 1.8% to 2.7%, and 2.8% to 4.1%, respectively at prescribed doses of 30 Gy, 45 Gy, and 54 Gy (compared with a baseline risk of 0.2%-0.3%). At an attained age of 45 years, the predicted incidence of stroke was 2.1% to 4.2%, 4.5% to 8.6%, and 6.7% to 13.0%, respectively at prescribed doses of 30 Gy, 45 Gy, and 54 Gy (compared with a baseline risk of 0.5%-1.0%). CONCLUSIONS: Risk of cerebrovascular toxicity continues to increase with longer follow-up. NTCP stroke predictions are very sensitive to model variables (baseline stroke risk and proportional stroke hazard), both of which found in the literature may be systematically erring on minimization of true risk. We hope this information will assist practitioners in counseling, screening, surveilling, and facilitating risk reduction of RT-related cerebrovascular late effects in this highly sensitive population.

4.
Arthritis Rheumatol ; 74(10): 1687-1698, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35583812

RESUMO

OBJECTIVE: The pathogenesis of cutaneous lupus erythematosus (CLE) is multifactorial, and CLE is difficult to treat due to the heterogeneity of inflammatory processes among patients. Antimalarials such as hydroxychloroquine (HCQ) and quinacrine (QC) have long been used as first-line systemic therapy; however, many patients do not respond to treatment with antimalarials and require systemic immunosuppressants that produce undesirable side effects. Given the complexity and the unpredictability of responses to antimalarial treatments in CLE patients, we sought to characterize the immunologic profile of patients with CLE stratified by subsequent treatment outcomes to identify potential biomarkers of inducible response. METHODS: We performed mass cytometry imaging of multiple immune cell types and inflammation markers in treatment-naive skin biopsy samples from 48 patients with CLE to identify baseline immunophenotypes that may predict the response to antimalarial therapy. Patients were stratified according to their response to treatment with antimalarials, as HCQ responders, QC responders, or nonresponders. RESULTS: HCQ responders demonstrated increased CD4+ T cells compared to the QC responder group. Patients in the nonresponder group were found to have decreased Treg cells compared to QC responders and increased central memory T cells compared to HCQ responders. QC responders expressed increased phosphorylated stimulator of interferon genes (pSTING) and interferon-κ (IFNκ) compared to HCQ responders. Phosphorylated STING and IFNκ were found to be localized to conventional dendritic cells (cDCs), and the intensity of pSTING and IFNκ staining was positively correlated with the number of cDCs on a tissue and cellular level. Neighborhood analysis revealed decreased regulatory cell interactions in nonresponder patients. Hierarchical clustering revealed that nonresponder patients could be further differentiated based on expression of pSTAT2, pSTAT3, pSTAT4, pSTAT5, phosphorylated interferon regulatory factor 3 (pIRF3), granzyme B, pJAK2, interleukin-4 (IL-4), IL-17, and IFNγ. CONCLUSION: These findings indicate differential immune cell compositions between patients with CLE, offering guidance for future research on precision-based medicine and treatment response.


Assuntos
Antimaláricos , Lúpus Eritematoso Cutâneo , Lúpus Eritematoso Sistêmico , Antimaláricos/efeitos adversos , Antimaláricos/uso terapêutico , Granzimas , Humanos , Hidroxicloroquina/efeitos adversos , Imunossupressores/uso terapêutico , Fator Regulador 3 de Interferon , Interferons , Interleucina-17 , Interleucina-4 , Lúpus Eritematoso Cutâneo/tratamento farmacológico , Lúpus Eritematoso Cutâneo/patologia , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Quinacrina/farmacologia , Quinacrina/uso terapêutico
5.
Adv Radiat Oncol ; 5(5): 936-942, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33083656

RESUMO

PURPOSE: A bolus is usually required to ensure radiation dose coverage of extensive superficial tumors of the scalp or skull. Oftentimes, these boluses are challenging to make and are nonreproducible, so an easier method was sought. METHODS AND MATERIALS: Thermoplastic sheets are widely available in radiation oncology clinics and can serve as bolus. Two template cutouts were designed for anterior and posterior halves to encompass the cranium of children and adults. RESULTS: The created bolus was imaged using computed tomography, which demonstrated good conformity and minimal air gaps. CONCLUSIONS: Although making a bolus for treating superficial tumors of the scalp or head and neck is challenging, the presented technique enables thermoplastic to be used as a bolus and is quick, easy, and reproducible.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA