Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Chem Inf Model ; 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39207455

RESUMO

The growth hormone-releasing hormone receptor (GHRHR) belongs to Class B1 of G protein-coupled receptors (GPCRs). Class B1 GPCR peptides such, as growth hormone-releasing hormone (GHRH), have been proposed to bind in a two-step model, where first the C-terminal region of the peptide interacts with the extracellular domain of the receptor and, subsequently, the N-terminus interacts with the seven transmembrane domain of the receptor, resulting in activation. The GHRHR has recently been highlighted as a promising drug target toward several types of cancer and has been shown to be overexpressed in prostate, breast, pancreatic, and ovarian cancer. Indeed, peptide GHRHR antagonists have displayed promising results in many cancer models. However, no nonpeptide GHRHR-targeting compounds have yet been identified. We have utilized several computational tools to target GHRHR and identify potential small-molecule compounds directed at this receptor. These compounds were validated in vitro using a cyclic adenosine monophosphate (cAMP) ELISA to measure activity at the GHRHR. In vitro results suggest that several of the novel small-molecule compounds could inhibit GHRH-induced cAMP accumulation. Preliminary analysis of the specificity/selectivity of one of the most effective hit compounds indicated that the effect seen was via inhibition of the GHRHR. We therefore report the first nonpeptide antagonists of GHRHR and propose a structural basis for inhibition induced by the compounds, which may assist in the future design of lead GHRHR compounds for treating disorders attributed to dysregulated/aberrant GHRHR signaling.

2.
Cancers (Basel) ; 15(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36831384

RESUMO

Arkadia (RNF111) is a positive regulator of the TGF-ß signaling that mediates the proteasome-dependent degradation of negative factors of the pathway. It is classified as an E3 ubiquitin ligase and a SUMO-targeted ubiquitin ligase (STUBL), implicated in various pathological conditions including cancer and fibrosis. The enzymatic (ligase) activity of Arkadia is located at its C-terminus and involves the RING domain. Notably, E3 ligases require E2 enzymes to perform ubiquitylation. However, little is known about the cooperation of Arkadia with various E2 enzymes and the type of ubiquitylation that they mediate. In the present work, we study the interaction of Arkadia with the E2 partners UbcH5B and UbcH13, as well as UbcH7. Through NMR spectroscopy, we found that the E2-Arkadia interaction surface is similar in all pairs examined. Nonetheless, the requirements and factors that determine an enzymatically active E2-Arkadia complex differ in each case. Furthermore, we revealed that the cooperation of Arkadia with different E2s results in either monoubiquitylation or polyubiquitin chain formation via K63, K48, or K11 linkages, which can determine the fate of the substrate and lead to distinct biological outcomes.

3.
Biomol NMR Assign ; 17(1): 1-8, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36272047

RESUMO

The genome of Hepatitis E virus (HEV) is 7.2 kilobases long and has three open reading frames. The largest one is ORF1, encoding a non-structural protein involved in the replication process, and whose processing is ill-defined. The ORF1 protein is a multi-modular protein which includes a macro domain (MD). MDs are evolutionarily conserved structures throughout all kingdoms of life. MDs participate in the recognition and removal of ADP-ribosylation, and specifically viral MDs have been identified as erasers of ADP-ribose moieties interpreting them as important players at escaping the early stages of host-immune response. A detailed structural analysis of the apo and bound to ADP-ribose state of the native HEV MD would provide the structural information to understand how HEV MD is implicated in virus-host interplay and how it interacts with its intracellular partner during viral replication. In the present study we present the high yield expression of the native macro domain of HEV and its analysis by solution NMR spectroscopy. The HEV MD is folded in solution and we present a nearly complete backbone and sidechains assignment for apo and bound states. In addition, a secondary structure prediction by TALOS + analysis was performed. The results indicated that HEV MD has a α/ß/α topology very similar to that of most viral macro domains.


Assuntos
Adenosina Difosfato Ribose , Vírus da Hepatite E , Adenosina Difosfato Ribose/metabolismo , Vírus da Hepatite E/genética , Vírus da Hepatite E/metabolismo , Ressonância Magnética Nuclear Biomolecular , Espectroscopia de Ressonância Magnética
4.
Bioorg Chem ; 129: 106204, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36306699

RESUMO

The renin-angiotensin system (RAS) is a key regulator of human arterial pressure. Several of its effects are modulated by angiotensin II, an octapeptide originating from the action of angiotensin-I converting enzyme (ACE) on the decapeptide angiotensin-I. ACE possess two active sites (nACE and cACE) that have their own kinetic and substrate specificities. ACE inhibitors are widely used as the first-line treatment for hypertension and other heart-related diseases, but because they inactivate both ACE domains, their use is associated with serious side effects. Thus, the search for domain-specific ACE inhibitors has been the focus of intense research. Angiotensin (1-7), a peptide that also belongs to the RAS, acts as a substrate of nACE and an inhibitor of cACE. We have synthetized 15 derivatives of Ang (1-7), sequentially removing the N-terminal amino acids and modifying peptides extremities, to find molecules with improved selectivity and inhibition properties. Ac-Ang (2-7)-NH2 is a good ACE inhibitor, resistant to cleavage and with improved cACE selectivity. Molecular dynamics simulations provided a model for this peptide's selectivity, due to Val3 and Tyr4 interactions with ACE subsites. Val3 has an important interaction with the S3 subsite, since its removal greatly reduced peptide-enzyme interactions. Taken together, our findings support ongoing studies using insights from the binding of Ac-Ang (2-7)-NH2 to develop effective cACE inhibitors.


Assuntos
Angiotensina I , Peptidil Dipeptidase A , Humanos , Peptidil Dipeptidase A/metabolismo , Angiotensina I/farmacologia , Inibidores da Enzima Conversora de Angiotensina/química , Peptídeos/farmacologia
5.
Biomol NMR Assign ; 16(2): 379-384, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36066818

RESUMO

Soluble guanylate cyclase (sGC) is considered as the primary NO receptor across several known eukaryotes. The main interest regarding the biological role and its function, focuses on the H-NOX domain of the ß1 subunit. This domain in its active form bears a ferrous b type heme as prosthetic group, which facilitates the binding of NO and other diatomic gases. The key point that still needs to be answered is how the protein selectively binds the NO and how the redox state of heme and coordination determines H-NOX active state upon binding of diatomic gases. H-NOX domain is present in the genomes of both prokaryotes and eukaryotes, either as a stand-alone protein domain or as a partner of a larger polypeptide. The biological functions of these signaling modules for a wide range of genomes, diverge considerably along with their ligand binding properties. In this direction, we examine the prokaryotic H-NOX protein domain from Nostoc punctiforme (Npun H-NOX). Herein, we first report the almost complete NMR backbone and side-chain resonance assignment (1H, 13C, 15 N) of Npun H-NOX domain together with the NMR chemical shift-based prediction of the domain's secondary structure elements.


Assuntos
Nostoc , Guanilato Ciclase/química , Guanilato Ciclase/metabolismo , Heme/química , Ligantes , Óxido Nítrico/metabolismo , Ressonância Magnética Nuclear Biomolecular , Oxigênio/metabolismo , Receptores Citoplasmáticos e Nucleares , Guanilil Ciclase Solúvel/química
6.
Int J Mol Sci ; 23(18)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36142504

RESUMO

Arkadia is a positive regulator of the TGFß-SMAD2/3 pathway, acting through its C-terminal RING-H2 domain and targeting for degradation of its negative regulators. Here we explore the role of regions outside the RING domain (non-RING elements) of Arkadia on the E2-E3 interaction. The contribution of the non-RING elements was addressed using Arkadia RING 68 aa and Arkadia 119 aa polypeptides. The highly conserved NRGA (asparagine-arginine-glycine-alanine) and TIER (threonine-isoleucine-glutamine-arginine) motifs within the 119 aa Arkadia polypeptide, have been shown to be required for pSMAD2/3 substrate recognition and ubiquitination in vivo. However, the role of the NRGA and TIER motifs in the enzymatic activity of Arkadia has not been addressed. Here, nuclear magnetic resonance interaction studies with the E2 enzyme, UBCH5B, C85S UBCH5B-Ub oxyester hydrolysis, and auto-ubiquitination assays were used to address the role of the non-RING elements in E2-E3 interaction and in the enzymatic activity of the RING. The results support that the non-RING elements including the NRGA and TIER motifs are required for E2-E3 recognition and interaction and for efficient auto-ubiquitination. Furthermore, while Arkadia isoform-2 and its close homologue Arkadia 2C are known to interact with free ubiquitin, the results here showed that Arkadia isoform-1 does not interact with free ubiquitin.


Assuntos
Isoleucina , Ubiquitina-Proteína Ligases , Alanina/metabolismo , Arginina/metabolismo , Asparagina/metabolismo , Glutamina/metabolismo , Glicina/metabolismo , Isoleucina/metabolismo , Treonina/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
7.
Biomol NMR Assign ; 16(2): 399-406, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36107366

RESUMO

hPARP14 is a human ADP-ribosyl-transferase (ART) that belongs to the macroPARPs family, together with hPARP9 and hPARP15. It contains a tandem of three macro domains (MD) while each of them has different properties. The first one, namely MD1, has not been reported to exhibit a high binding affinity for ADP-ribose (ADPr) in contrast to the following two (MD2 and MD3). All three MDs exhibit an α/ß/α sandwich-like fold as reported by the deposited crystallographic structures. MD2 and MD3 recognize mono-ADP-ribosylated (MARylated) but not poly-ADP-ribosylated (PARylated) substrates and thus they allow hPARP14 to bind its targets, which can be potentially MARylated by its catalytic domain (CD). hPARP14 participates in DNA damage repair process and immune response against viruses like SARS-CoV-2, which also harbors an MD fold. Furthermore, hPARP14 like the other two macroPARPs (hPARP9 and hPARP15), is implicated in numerous types of cancer, such as B-aggressive lymphoma and sarcoma, rendering its MDs as potential important drug targets. Herein, we report the complete NMR backbone and side chain assignment (1H, 13C, 15N) of hPARP14 MD2 in the free and ADPr bound states and the NMR chemical shift-based prediction of its secondary structure elements. This is the first reported NMR study of a hPARP macro domain, paving the way to screen by NMR chemical compounds which may alter the ability of hPARP14 to interact with its substrates affecting its function.


Assuntos
COVID-19 , Proteínas Nucleares/química , SARS-CoV-2 , Adenosina Difosfato Ribose/metabolismo , Humanos , Ressonância Magnética Nuclear Biomolecular , Transferases
8.
J Mol Biol ; 434(16): 167720, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35839840

RESUMO

Viral infection in cells triggers a cascade of molecular defense mechanisms to maintain host-cell homoeostasis. One of these mechanisms is ADP-ribosylation, a fundamental post-translational modification (PTM) characterized by the addition of ADP-ribose (ADPr) on substrates. Poly(ADP-ribose) polymerases (PARPs) are implicated in this process and they perform ADP-ribosylation on host and pathogen proteins. Some viral families contain structural motifs that can reverse this PTM. These motifs known as macro domains (MDs) are evolutionarily conserved protein domains found in all kingdoms of life. They are divided in different classes with the viral belonging to Macro-D-type class because of their properties to recognize and revert the ADP-ribosylation. Viral MDs are potential pharmaceutical targets, capable to counteract host immune response. Sequence and structural homology between viral and human MDs are an impediment for the development of new active compounds against their function. Remdesivir, is a drug administrated in viral infections inhibiting viral replication through RNA-dependent RNA polymerase (RdRp). Herein, GS-441524, the active metabolite of the remdesivir, is tested as a hydrolase inhibitor for several viral MDs and for its binding to human homologs found in PARPs. This study presents biochemical and biophysical studies, which indicate that GS-441524 selectively modifies SARS-CoV-2 MD de-MARylation activity, while it does not interact with hPARP14 MD2 and hPARP15 MD2. The structural investigation of MD•GS-441524 complexes, using solution NMR and X-ray crystallography, discloses the impact of certain amino acids in ADPr binding cavity suggesting that F360 and its adjacent residues tune the selective binding of the inhibitor to SARS-CoV-2 MD.


Assuntos
ADP-Ribosilação , Adenosina/análogos & derivados , Inibidores de Protease de Coronavírus , Poli(ADP-Ribose) Polimerases , SARS-CoV-2 , ADP-Ribosilação/efeitos dos fármacos , Adenosina/química , Adenosina/farmacologia , Adenosina Difosfato Ribose/química , Inibidores de Protease de Coronavírus/química , Inibidores de Protease de Coronavírus/farmacologia , Humanos , Poli(ADP-Ribose) Polimerases/química , Ligação Proteica , Domínios Proteicos , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia
9.
Front Mol Biosci ; 9: 844129, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35281275

RESUMO

Single nucleotide polymorphisms (SNPs) are genetic variations which can play a vital role in the study of human health. SNP studies are often used to identify point mutations that are associated with diseases. Arkadia (RNF111) is an E3 ubiquitin ligase that enhances transforming growth factor-beta (TGF-ß) signaling by targeting negative regulators for degradation. Dysregulation of the TGF-ß pathway is implicated in cancer because it exhibits tumor suppressive activity in normal cells while in tumor cells it promotes invasiveness and metastasis. Τhe SNP CGT > TGT generated an amino-acid (aa) substitution of Arginine 957 to Cysteine on the enzymatic RING domain of Arkadia. This was more prevalent in a tumor than in a normal tissue sample of a patient with colorectal cancer. This prompted us to investigate the effect of this mutation in the structure and activity of Arkadia RING. We used nuclear magnetic resonance (NMR) to analyze at an atomic-level the structural and dynamic properties of the R957C Arkadia RING domain, while ubiquitination and luciferase assays provided information about its enzymatic functionality. Our study showed that the R957C mutation changed the electrostatic properties of the RING domain however, without significant effects on the structure of its core region. However, the functional studies revealed that the R957C Arkadia exhibits significantly increased enzymatic activity supporting literature data that Arkadia within tumor cells promotes aggressive and metastatic behavior.

10.
Biomol NMR Assign ; 16(1): 9-16, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34686999

RESUMO

SARS-CoV and MERS-CoV Macro Domains (MDs) exhibit topological and conformational features that resemble the nsP3b macro (or "X") domain of SARS-CoV-2. Indeed, all the three domains (SARS-CoV-2, SARS-CoV and MERS-CoV MDs) fold in a three-layer α/ß/α sandwich structure, as reported by crystallographic structural investigation of SARS-CoV MD and MERS-CoV MD. These viral MDs are able to bind ADP-ribose as many other MDs from different kingdoms. They have been characterized also as de-ADP-ribosylating enzymes. For this reason, these viral macrodomains recently emerged as important drug targets since they can counteract antiviral ADP-ribosylation mediated by poly-ADP-ribose polymerase (PARPs). Even in presence of the 3D structures of SARS-CoV MD and of MERS-CoV MD, we report herein the almost complete NMR backbone (1H, 13C, 15N) of SARS-CoV MD and MERS-CoV proteins in the free and ADPr bound forms, and the NMR chemical shift-based prediction of their secondary structure elements. These NMR data will help to further understanding of the atomic-level conformational dynamics of these proteins and will allow an extensive screening of small molecules as potential antiviral drugs.


Assuntos
COVID-19 , Coronavírus da Síndrome Respiratória do Oriente Médio , Adenosina Difosfato Ribose/metabolismo , Humanos , Coronavírus da Síndrome Respiratória do Oriente Médio/química , Ressonância Magnética Nuclear Biomolecular , Domínios Proteicos , SARS-CoV-2
11.
Cancers (Basel) ; 13(12)2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34207535

RESUMO

Aberrant angiogenesis is a hallmark for cancer and inflammation, a key notion in drug repurposing efforts. To delineate the anti-angiogenic properties of amifostine in a human adult angiogenesis model via 3D cell metabolomics and upon a stimulant-specific manner, a 3D cellular angiogenesis assay that recapitulates cell physiology and drug action was coupled to untargeted metabolomics by liquid chromatography-mass spectrometry and nuclear magnetic resonance spectroscopy. The early events of angiogenesis upon its most prominent stimulants (vascular endothelial growth factor-A or deferoxamine) were addressed by cell sprouting measurements. Data analyses consisted of a series of supervised and unsupervised methods as well as univariate and multivariate approaches to shed light on mechanism-specific inhibitory profiles. The 3D untargeted cell metabolomes were found to grasp the early events of angiogenesis. Evident of an initial and sharp response, the metabolites identified primarily span amino acids, sphingolipids, and nucleotides. Profiles were pathway or stimulant specific. The amifostine inhibition profile was rather similar to that of sunitinib, yet distinct, considering that the latter is a kinase inhibitor. Amifostine inhibited both. The 3D cell metabolomics shed light on the anti-angiogenic effects of amifostine against VEGF-A- and deferoxamine-induced angiogenesis. Amifostine may serve as a dual radioprotective and anti-angiogenic agent in radiotherapy patients.

12.
J Mol Biol ; 432(24): 166712, 2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-33197462

RESUMO

La is an abundant phosphoprotein that protects polymerase III transcripts from 3'-5' exonucleolytic degradation and facilitates their folding. Consisting of the evolutionary conserved La motif (LAM) and two consecutive RNA Recognition Motifs (RRMs), La was also found to bind additional RNA transcripts or RNA domains like internal ribosome entry site (IRES), through sequence-independent binding modes which are poorly understood. Although it has been reported overexpressed in certain cancer types and depletion of its expression sensitizes cancer cells to certain chemotherapeutic agents, its role in cancer remains essentially uncharacterized. Herein, we study the effects of La overexpression in A549 lung adenocarcinoma cells, which leads to increased cell proliferation and motility. Expression profiling of several transcription and translation factors indicated that La overexpression leads to downregulation of global translation through hypophosphorylation of 4E-BPs and upregulation of IRES-mediated translation. Moreover, analysis of La localization after nutrition deprivation of the transfected cells showed a normal distribution in the nucleus and nucleoli. Although the RNA binding capacity of La has been primarily linked to the synergy between the conserved LAM and RRM1 domains which act as a module, we show that recombinant stand-alone LAM can specifically bind a pre-tRNA ligand, based on binding experiments combined with NMR analysis. We propose that LAM RNA binding properties could support the expanding and diverse RNA ligand repertoire of La, thus promoting its modulatory role, both under normal and pathogenic conditions like cancer.


Assuntos
Neoplasias Pulmonares/genética , Fosfoproteínas/genética , Proteínas de Ligação a RNA/genética , Relação Estrutura-Atividade , Células A549 , Motivos de Aminoácidos/genética , Sequência de Aminoácidos/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Sítios Internos de Entrada Ribossomal/genética , Neoplasias Pulmonares/patologia , Fosfoproteínas/química , Ligação Proteica/genética , Biossíntese de Proteínas/genética , Motivo de Reconhecimento de RNA/genética
13.
Amino Acids ; 52(9): 1337-1351, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32996057

RESUMO

The corticotropin-releasing factor (CRF) and its CRF1 receptor (CRF1R) play a central role in the maintenance of homeostasis. Malfunctioning of the CRF/CRF1R unit is associated with several disorders, such as anxiety and depression. Non-peptide CRF1R-selective antagonists have been shown to exert anxiolytic and antidepressant effects on experimental animals. However, none of them is in clinical use today because of several side effects, thus demonstrating the need for the development of other more suitable CRF1R antagonists. In an effort to develop novel CRF1R antagonists we designed, synthesized and chemically characterized two tripeptide analogues of CRF, namely (R)-LMI and (S)-LMI, having their Leu either in R (or D) or in S (or L) configuration, respectively. Their design was based on the crystal structure of the N-extracellular domain (N-domain) of CRF1R/CRF complex, using a relevant array of computational methods. Experimental evaluation of the stability of synthetic peptides in human plasma has revealed that (R)-LMI is proteolytically more stable than (S)-LMI. Based on this finding, (R)-LMI was selected for pharmacological characterization. We have found that (R)-LMI is a CRF antagonist, inhibiting (1) the CRF-stimulated accumulation of cAMP in HEK 293 cells expressing the CRF1R, (2) the production of interleukins by adipocytes and (3) the proliferation rate of RAW 264.7 cells. (R)-LMI likely blocked agonist actions by interacting with the N-domain of CRF1R as suggested by data using a constitutively active chimera of CRF1R. We propose that (R)-LMI can be used as an optimal lead compound in the rational design of novel CRF antagonists.


Assuntos
AMP Cíclico/metabolismo , Descoberta de Drogas , Oligopeptídeos/química , Oligopeptídeos/farmacologia , Receptores de Hormônio Liberador da Corticotropina/antagonistas & inibidores , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Animais , Proliferação de Células , Células HEK293 , Humanos , Camundongos , Domínios Proteicos , Células RAW 264.7
14.
Biomolecules ; 10(6)2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32526944

RESUMO

Surface active agents are characterized for their capacity to adsorb to fluid and solid-water interfaces. They can be classified as surfactants and emulsifiers based on their molecular weight (MW) and properties. Over the years, the chemical surfactant industry has been rapidly increasing to meet consumer demands. Consequently, such a boost has led to the search for more sustainable and biodegradable alternatives, as chemical surfactants are non-biodegradable, thus causing an adverse effect on the environment. To these ends, many microbial and/or marine-derived molecules have been shown to possess various biological properties that could allow manufacturers to make additional health-promoting claims for their products. Our aim, in this review article, is to provide up to date information of critical health-promoting properties of these molecules and their use in blue-based biotechnology (i.e., biotechnology using aquatic organisms) with a focus on food, cosmetic and pharmaceutical/biomedical applications.


Assuntos
Biotecnologia , Saúde , Tensoativos/química , Animais , Humanos , Tensoativos/metabolismo
15.
Metabolomics ; 16(5): 58, 2020 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-32333120

RESUMO

BACKGROUND: A major challenge from the moment a child is delivered is the adaptation to the extrauterine life, where rapid metabolic changes take place. The study of these changes during the first days of human life may assist in the understanding of the metabolic processes that occur at this critical period, which is likely to provide significant clinical insights. To date, metabolomics has become a powerful field, ideal for the monitoring of such dynamic variations, since it offers the possibility to identify alterations in metabolic profiles, even on daily basis. METHODS: The study included 253 healthy newborns (GA 35 to 40 weeks) from the region of Western Greece. Urine samples were collected immediately after birth and at the third day of life. NMR-based metabolomics was used to compare the metabolic urinary profiles of newborns from the first and third day of their life, assessing the impact of six perinatal factors; delivery mode, prematurity, maternal smoking, gender, nutrition and neonatal jaundice. RESULTS: Analysis of urine metabolic fingerprint from the first and third day of life, coupled with multivariate statistics, provides insights into the details of early life metabolic profile differentiation. Αt the third day of life metabolic adaptations are evident, as many differences were noted in urine of healthy neonates within the first 72 h postpartum. Trends in differentiation of metabolites levels between the two groups, late preterm and term newborns, have been also observed. CONCLUSIONS: Newborn's urine metabolic profiles confirmed the rapid changes in their metabolism after birth. Further, ongoing research will enable us to develop one reference model of urinary metabolomics in healthy newborns during the period of adaptation to the extra-uterine life.


Assuntos
Adaptação Biológica , Recém-Nascido Prematuro/metabolismo , Metabolômica , Feminino , Humanos , Recém-Nascido , Recém-Nascido Prematuro/urina , Espectroscopia de Ressonância Magnética , Masculino
16.
J Mol Biol ; 431(12): 2283-2297, 2019 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-30998933

RESUMO

Mayaro virus (MAYV) is a member of Togaviridae family, which also includes Chikungunya virus as a notorious member. MAYV recently emerged in urban areas of the Americas, and this emergence emphasized the current paucity of knowledge about its replication cycle. The macro domain (MD) of MAYV belongs to the N-terminal region of its non-structural protein 3, part of the replication complex. Here, we report the first structural and dynamical characterization of a previously unexplored Alphavirus MD investigated through high-resolution NMR spectroscopy, along with data on its ligand selectivity and binding properties. The structural analysis of MAYV MD reveals a typical "macro" (ßßαßßαßαßα) fold for this polypeptide, while NMR-driven interaction studies provide in-depth insights into MAYV MD-ligand adducts. NMR data in concert with thermodynamics and biochemical studies provide convincing experimental evidence for preferential binding of adenosine diphosphate ribose (ADP-r) and adenine-rich RNAs to MAYV MD, thus shedding light on the structure-function relationship of a previously unexplored viral MD. The emerging differences with any other related MD are expected to enlighten distinct functions.


Assuntos
Nucleotídeos/metabolismo , RNA/metabolismo , Infecções por Togaviridae/virologia , Togaviridae/metabolismo , Proteínas não Estruturais Virais/metabolismo , Adenosina Difosfato Ribose/metabolismo , Humanos , Modelos Moleculares , Ligação Proteica , Domínios Proteicos , Infecções por Togaviridae/metabolismo , Proteínas não Estruturais Virais/química
17.
J Struct Biol ; 206(1): 119-127, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30825649

RESUMO

Venezuelan equine encephalitis virus (VEEV) is a new world alphavirus which can be involved in several central nervous system disorders such as encephalitis and meningitis. The VEEV genome codes for 4 non-structural proteins (nsP), of which nsP3 contains a Macro domain. Macro domains (MD) can be found as stand-alone proteins or embedded within larger proteins in viruses, bacteria and eukaryotes. Their most common feature is the binding of ADP-ribose (ADPr), while several macro domains act as ribosylation writers, erasers or readers. Alphavirus MD erase ribosylation but their precise contribution in viral replication is still under investigation. NMR-driven titration experiments of ADPr in solution with the VEEV macro domain (in apo- and complex state) show that it adopts a suitable conformation for ADPr binding. Specific experiments indicate that the flexibility of the loops ß5-α3 and α3-ß6 is critical for formation of the complex and assists a wrapping mechanism for ADPr binding. Furthermore, along with this sequence of events, the VEEV MD undergoes a conformational exchange process between the apo state and a low-populated "dark" conformational state.


Assuntos
Adenosina Difosfato Ribose/química , Vírus da Encefalite Equina Venezuelana/metabolismo , Simulação de Dinâmica Molecular , Domínios Proteicos , Proteínas não Estruturais Virais/química , Adenosina Difosfato Ribose/metabolismo , Animais , Vírus da Encefalite Equina Venezuelana/genética , Cavalos , Humanos , Espectroscopia de Ressonância Magnética , Conformação Molecular , Ligação Proteica , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Replicação Viral
18.
Biomol NMR Assign ; 10(2): 379-83, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27624767

RESUMO

Here, we report the high yield expression and preliminary structural analysis via solution hetero-nuclear NMR spectroscopy of the recombinant Met-1 human Angiogenin. The analysis reveals a well folded as well as, a monomeric polypeptide. Τhe sequence-specific assignment of its (1)H, (15)N and (13)C resonances at high percentage was obtained. Also, using TALOS+ its secondary structure elements were determined.


Assuntos
Ressonância Magnética Nuclear Biomolecular , Ribonuclease Pancreático/química , Humanos
19.
PLoS One ; 10(6): e0130532, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26110603

RESUMO

We previously identified several peptide sequences that mimicked the terminal sugars of complex glycans. Using plant lectins as analogs of lectin-type cell-surface receptors, a tetravalent form of a peptide with the sequence NPSHPLSG, designated svH1C, bound with high avidity to lectins specific for glycans with terminal 5-acetylneuraminic acid (Neu5Ac)-galactose (Gal)/N-acetylgalactosamine (GalNAc) sequences. In this report, we show by circular dichroism and NMR spectra that svH1C lacks an ordered structure and thus interacts with binding sites from a flexible conformation. The peptide binds with high avidity to several recombinant human siglec receptors that bind preferentially to Neu5Ac(α2,3)Gal, Neu5Ac(α2,6)GalNAc or Neu5Ac(α2,8)Neu5Ac ligands. In addition, the peptide bound the receptor NKG2D, which contains a lectin-like domain that binds Neu5Ac(α2,3)Gal. The peptide bound to these receptors with a KD in the range of 0.6 to 1 µM. Binding to these receptors was inhibited by the glycoprotein fetuin, which contains multiple glycans that terminate in Neu5Ac(α2,3)Gal or Neu5Ac(α2,6)Gal, and by sialyllactose. Binding of svH1C was not detected with CLEC9a, CLEC10a or DC-SIGN, which are lectin-type receptors specific for other sugars. Incubation of neuraminidase-treated human peripheral blood mononuclear cells with svH1C resulted in binding of the peptide to a subset of the CD14+ monocyte population. Tyrosine phosphorylation of siglecs decreased dramatically when peripheral blood mononuclear cells were treated with 100 nM svH1C. Subcutaneous, alternate-day injections of svH1C into mice induced several-fold increases in populations of several types of immune cells in the peritoneal cavity. These results support the conclusion that svH1C mimics Neu5Ac-containing sequences and interacts with cell-surface receptors with avidities sufficient to induce biological responses at low concentrations. The attenuation of inhibitory receptors suggests that svH1C has characteristics of a checkpoint inhibitor.


Assuntos
Galactose/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Lectinas de Plantas/metabolismo , Animais , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Camundongos , Ácido N-Acetilneuramínico/química , Peptídeos/química , Peptídeos/metabolismo , Lectinas de Plantas/química , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/química , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo
20.
J Endourol ; 29(5): 580-9, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25441059

RESUMO

BACKGROUND AND PURPOSE: The urothelium represents "the tightest and most impermeable barrier in the body." We investigated the distribution of paclitaxel (PTX) in the ureteral wall after the inflation of a paclitaxel-eluting balloon (PEB) in an attempt to elucidate the possibility of clinical application of PEBs in the ureter. MATERIALS AND METHODS: Nine domestic pigs were used. Nine PEBs and nine conventional percutaneous angioplasty balloons (CB) were inflated in the right and left ureter of each animal, respectively. The ureter treated by CB was the control for the contralateral ureter. Specimens were removed: Immediately after inflation (group A), after 12 hours (group B), and after 24 hours (group C). Two samples were obtained from each ureter of groups A, B and C. One sample was investigated by nuclear magnetic resonance spectroscopy (NMR), the other by histology and immunohistochemistry (IHC) using a specific for PTX polyclonal antibody. RESULTS: Reduced inflammation was observed in the group B and C samples in comparison with their controls. PTX was distributed mostly in the urothelium and submucosal layer in group A (IHC). The agent was present in the urothelial, submucosal, and muscle layer in groups B and C. The concentration of PTX (NMR) has been reduced in group C compared with the tissue extracts of group B. CONCLUSION: The distribution of PTX includes the urothelial, submucosal, and smooth muscle layers. Inflammation was reduced in the case of drug-eluting balloons.


Assuntos
Antineoplásicos Fitogênicos/farmacocinética , Sistemas de Liberação de Medicamentos , Paclitaxel/farmacocinética , Ureter/metabolismo , Urotélio/metabolismo , Animais , Antineoplásicos Fitogênicos/administração & dosagem , Dilatação/instrumentação , Feminino , Imuno-Histoquímica , Espectroscopia de Ressonância Magnética , Paclitaxel/administração & dosagem , Sus scrofa , Suínos , Ureter/patologia , Obstrução Ureteral/cirurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA