Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Science ; 383(6680): eadf2341, 2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-38236959

RESUMO

Liquid biopsies enable early detection and monitoring of diseases such as cancer, but their sensitivity remains limited by the scarcity of analytes such as cell-free DNA (cfDNA) in blood. Improvements to sensitivity have primarily relied on enhancing sequencing technology ex vivo. We sought to transiently augment the level of circulating tumor DNA (ctDNA) in a blood draw by attenuating its clearance in vivo. We report two intravenous priming agents given 1 to 2 hours before a blood draw to recover more ctDNA. Our priming agents consist of nanoparticles that act on the cells responsible for cfDNA clearance and DNA-binding antibodies that protect cfDNA. In tumor-bearing mice, they greatly increase the recovery of ctDNA and improve the sensitivity for detecting small tumors.


Assuntos
Ácidos Nucleicos Livres , Neoplasias , Animais , Camundongos , Biomarcadores Tumorais/sangue , Ácidos Nucleicos Livres/sangue , DNA Tumoral Circulante/sangue , Biópsia Líquida , Mutação , Neoplasias/sangue , Neoplasias/diagnóstico , Humanos , Feminino , Camundongos Endogâmicos BALB C , Sensibilidade e Especificidade
3.
Clin Chem ; 70(2): 434-443, 2024 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-38069911

RESUMO

BACKGROUND: Tracing patient-specific tumor mutations in cell-free DNA (cfDNA) for minimal residual disease (MRD) detection is promising but challenging. Assaying more mutations and cfDNA stands to improve MRD detection but requires highly accurate, efficient sequencing methods and proper calibration to prevent false detection with bespoke tests. METHODS: MAESTRO (Minor Allele Enriched Sequencing Through Recognition Oligonucleotides) uses mutation-specific oligonucleotide probes to enrich cfDNA libraries for tumor mutations and enable their accurate detection with minimal sequencing. A new approach, MAESTRO-Pool, which entails pooling MAESTRO probes for all patients and applying these to all samples from all patients, was used to screen for 22 333 tumor mutations from 9 melanoma patients in 98 plasma samples. This enabled quantification of MRD detection in patient-matched samples and false detection in unmatched samples from other patients. To detect MRD, a new dynamic MRD caller was used that computes a probability for MRD detection based on the number of mutations and cfDNA molecules sequenced, thereby calibrating for variations in each bespoke test. RESULTS: MAESTRO-Pool enabled sensitive detection of MRD down to 0.78 parts per million (ppm), reflecting a 10- to 100-fold improvement over existing tests. Of the 8 MRD positive samples with ultra-low tumor fractions <10 ppm, 7 were either in upward-trend preceding recurrence or downward-trend aligning with response. Of 784 patient-unmatched tests, only one was found as MRD positive (tumor fraction = 2.7 ppm), suggesting high specificity. CONCLUSIONS: MAESTRO-Pool enables massively parallel, tumor-informed MRD testing with concurrent benchmarking of bespoke MRD tests. Meanwhile, our new MRD caller enables more mutations and cfDNA molecules to be tested without compromising specificity. These improve the ability for detecting traces of MRD from blood.


Assuntos
Ácidos Nucleicos Livres , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Neoplasia Residual/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Estudos de Coortes , Mutação
4.
Nat Genet ; 55(5): 871-879, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37106072

RESUMO

Detecting mutations from single DNA molecules is crucial in many fields but challenging. Next-generation sequencing (NGS) affords tremendous throughput but cannot directly sequence double-stranded DNA molecules ('single duplexes') to discern the true mutations on both strands. Here we present Concatenating Original Duplex for Error Correction (CODEC), which confers single duplex resolution to NGS. CODEC affords 1,000-fold higher accuracy than NGS, using up to 100-fold fewer reads than duplex sequencing. CODEC revealed mutation frequencies of 2.72 × 10-8 in sperm of a 39-year-old individual, and somatic mutations acquired with age in blood cells. CODEC detected genome-wide, clonal hematopoiesis mutations from single DNA molecules, single mutated duplexes from tumor genomes and liquid biopsies, microsatellite instability with 10-fold greater sensitivity and mutational signatures, and specific tumor mutations with up to 100-fold fewer reads. CODEC enables more precise genetic testing and reveals biologically significant mutations, which are commonly obscured by NGS errors.


Assuntos
Neoplasias , Sêmen , Masculino , Humanos , Adulto , Mutação/genética , Neoplasias/genética , Neoplasias/diagnóstico , Análise de Sequência de DNA , DNA , Sequenciamento de Nucleotídeos em Larga Escala
5.
medRxiv ; 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36945501

RESUMO

Purpose: To examine circulating tumor DNA (ctDNA) and its association with residual cancer burden (RCB) using an ultrasensitive assay in patients with triple-negative breast cancer (TNBC) receiving neoadjuvant chemotherapy (NAT). Patients and Methods: We identified responders (RCB-0/1) and matched non-responders (RCB-2/3) from the phase II TBCRC 030 prospective study of neoadjuvant paclitaxel vs. cisplatin in TNBC. We collected plasma samples at baseline, three weeks, and twelve weeks (end of therapy). We created personalized ctDNA assays utilizing MAESTRO mutation enrichment sequencing. We explored associations between ctDNA and RCB status and disease recurrence. Results: Of 139 patients, 68 had complete samples and no additional NAT. Twenty-two were responders and 19 of those had sufficient tissue for whole-genome sequencing. We identified an additional 19 non-responders for a matched case-control analysis of 38 patients using a MAESTRO ctDNA assay tracking 319-1000 variants (median 1000) to 114 plasma samples from 3 timepoints. Overall, ctDNA positivity was 100% at baseline, 79% at week 3, and 55% at week 12. Median tumor fraction (TFx) was 3.7 × 10 -4 (range: 7.9 × 10 -7 to 4.9 × 10 -1 ). TFx decreased 285-fold from baseline to week 3 in responders and 24-fold in non-responders. Week 12 ctDNA clearance correlated with RCB: clearance was observed in 10/11 patients with RCB-0, 3/8 with RCB-1, 4/15 with RCB-2, and 0/4 with RCB-3. Among 6 patients with known recurrence five had persistent ctDNA at week 12. Conclusion: NAT for TNBC reduced ctDNA TFx by 285-fold in responders and 24-fold in non-responders. In 58% (22/38) of patients, ctDNA TFx dropped below the detection level of a commercially available test, emphasizing the need for sensitive tests. Additional studies will determine if ctDNA-guided approaches can improve outcomes.

6.
bioRxiv ; 2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36711455

RESUMO

Blood-based, or "liquid," biopsies enable minimally invasive diagnostics but have limits on sensitivity due to scarce cell-free DNA (cfDNA). Improvements to sensitivity have primarily relied on enhancing sequencing technology ex vivo . Here, we sought to augment the level of circulating tumor DNA (ctDNA) detected in a blood draw by attenuating the clearance of cfDNA in vivo . We report a first-in-class intravenous DNA-binding priming agent given 2 hours prior to a blood draw to recover more cfDNA. The DNA-binding antibody minimizes nuclease digestion and organ uptake of cfDNA, decreasing its clearance at 1 hour by over 150-fold. To improve plasma persistence and limit potential immune interactions, we abrogated its Fc-effector function. We found that it protects GC-rich sequences and DNase-hypersensitive sites, which are ordinarily underrepresented in cfDNA. In tumor-bearing mice, priming improved tumor DNA recovery by 19-fold and sensitivity for detecting cancer from 6% to 84%. These results suggest a novel method to enhance the sensitivity of existing DNA-based cancer testing using blood biopsies.

7.
bioRxiv ; 2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36711603

RESUMO

Liquid biopsies are enabling minimally invasive monitoring and molecular profiling of diseases across medicine, but their sensitivity remains limited by the scarcity of cell-free DNA (cfDNA) in blood. Here, we report an intravenous priming agent that is given prior to a blood draw to increase the abundance of cfDNA in circulation. Our priming agent consists of nanoparticles that act on the cells responsible for cfDNA clearance to slow down cfDNA uptake. In tumor-bearing mice, this agent increases the recovery of circulating tumor DNA (ctDNA) by up to 60-fold and improves the sensitivity of a ctDNA diagnostic assay from 0% to 75% at low tumor burden. We envision that this priming approach will significantly improve the performance of liquid biopsies across a wide range of clinical applications in oncology and beyond.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA