Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Front Oncol ; 13: 1175617, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37228496

RESUMO

Background: Ovarian cancer has long been known to be the deadliest cancer associated with the female reproductive system. More than 15% of ovarian cancer patients have a defective BRCA-mediated homologous recombination repair pathway that can be therapeutically targeted with PARP inhibitors (PARPi), such as Talazoparib (TLZ). The expansion of TLZ clinical approval beyond breast cancer has been hindered due to the highly potent systemic side effects resembling chemotherapeutics. Here we report the development of a novel TLZ-loaded PLGA implant (InCeT-TLZ) that sustainedly releases TLZ directly into the peritoneal (i.p.) cavity to treat patient-mimicking BRCA-mutated metastatic ovarian cancer (mOC). Methods: InCeT-TLZ was fabricated by dissolving TLZ and PLGA in chloroform, followed by extrusion and evaporation. Drug loading and release were confirmed by HPLC. The in vivo therapeutic efficacy of InCeT-TLZ was carried out in a murine Brca2-/-p53R172H/-Pten-/- genetically engineered peritoneally mOC model. Mice with tumors were divided into four groups: PBS i.p. injection, empty implant i.p. implantation, TLZ i.p. injection, and InCeT-TLZ i.p. implantation. Body weight was recorded three times weekly as an indicator of treatment tolerance and efficacy. Mice were sacrificed when the body weight increased by 50% of the initial weight. Results: Biodegradable InCeT-TLZ administered intraperitoneally releases 66 µg of TLZ over 25 days. In vivo experimentation shows doubled survival in the InCeT-TLZ treated group compared to control, and no significant signs of toxicity were visible histologically in the surrounding peritoneal organs, indicating that the sustained and local delivery of TLZ greatly maximized therapeutic efficacy and minimized severe clinical side effects. The treated animals eventually developed resistance to PARPi therapy and were sacrificed. To explore treatments to overcome resistance, in vitro studies with TLZ sensitive and resistant ascites-derived murine cell lines were carried out and demonstrated that ATR inhibitor and PI3K inhibitor could be used in combination with the InCeT-TLZ to overcome acquired PARPi resistance. Conclusion: Compared to intraperitoneal PARPi injection, the InCeT-TLZ better inhibits tumor growth, delays the ascites formation, and prolongs the overall survival of treated mice, which could be a promising therapy option that benefits thousands of women diagnosed with ovarian cancer.

4.
Nanomedicine (Lond) ; 17(22): 1677-1693, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36621896

RESUMO

Background: Despite medicinal advances, cancer is still a big problem requiring better diagnostic and treatment tools. Magnetic nanoparticle (MNP)-based nanosystems for multiple-purpose applications were developed for these unmet needs. Methods: This study fabricated novel trifunctional MNPs of Fe3O4@PLA-PEG for drug release, MRI and magnetic fluid hyperthermia. Result: The MNPs provided a significant loading of curcumin (∼11%) with controllable release ability, a high specific absorption rate of 82.2 W/g and significantly increased transverse relaxivity (r2 = 364.75 mM-1 s-1). The in vivo study confirmed that the MNPs enhanced MRI contrast in tumor observation and low-field magnetic fluid hyperthermia could effectively reduce the tumor size in mice bearing sarcoma 180. Conclusion: The nanocarrier has potential for drug release, cancer treatment monitoring and therapy.


In this study, the authors designed and fabricated novel magnetic trifunctional nanoparticles of Fe3O4@PLA-PEG. The 8.5 nm Fe3O4 core was covered with the polymeric matrix of PLA-PEG to encapsulate an anticancer agent of curcumin at a content of about 11%. Curcumin release from the nanoparticles (NPs) could be controlled by applying a remote alternating magnetic field. The NPs enhanced MRI contrast, which allowed the authors to better distinguish the tumor and surroundings in MR images, which would help monitor treatment. The heat that NPs generated when applied to a field at low intensity could effectively reduce the tumor size in mice bearing sarcoma 180. The nanocarrier, therefore, has potential for cancer treatment monitoring and drug release conjuvant with magnetic hyperthermia therapy.


Assuntos
Curcumina , Hipertermia Induzida , Nanopartículas de Magnetita , Neoplasias , Animais , Camundongos , Curcumina/farmacologia , Curcumina/uso terapêutico , Nanopartículas de Magnetita/uso terapêutico , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Imageamento por Ressonância Magnética , Poliésteres , Linhagem Celular Tumoral
5.
Adv Ther (Weinh) ; 4(3)2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33997266

RESUMO

Nanoencapsulated drug delivery to solid tumors is a promising approach to overcome pharmacokinetic limitations of therapeutic drugs. However, encapsulation leads to complex drug biodistribution and delivery making analysis of delivery efficacy challenging. As proxies, nanocarrier accumulation or total tumor drug uptake in the tumor are used to evaluate delivery. Yet, these measurements fail to assess delivery of active, released drug to the target, and thus it commonly remains unknown if drug-target occupancy has been achieved. Here, we develop an approach to evaluate the delivery of encapsulated drug to the target, where residual drug target vacancy is measured using a fluorescent drug analog. In vitro measurements reveal that burst release governs drug delivery independent of nanoparticle uptake, and highlight limitations of evaluating nanoencapsulated drug delivery in these models. In vivo, however, our approach captures successful nanoencapsulated delivery, finding that tumor stromal cells drive nanoparticle accumulation and mediate drug delivery to adjacent cancer cells. These results, and generalizable approach, provide a critical advance to evaluate delivery of encapsulated drug to the drug target - the central objective of nanotherapeutics.

6.
J Clin Med ; 10(7)2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33916177

RESUMO

Cancer is the second biggest cause of death in children in the US. With the development of chemotherapy, there has been a substantial increase in the overall survival rate in the last 30 years. However, the overall mortality rate in children with cancer remains 25%, and many survivors experience a decline in overall quality of life and long-term adverse effects caused by treatments. Although cancer cells share common characteristics, pediatric cancers are different from adult cancers in their prevalence, mutation load, and drug response. Therefore, there is an urgent unmet need to develop therapeutic approaches specifically designed for children with cancer. Nanotechnology can potentially overcome the deficiencies of conventional methods of administering chemotherapy and ultimately improve clinical outcomes. The nanoparticle-based drug delivery systems can decrease the toxicity of therapy, provide a sustained or controlled drug release, improve the pharmacokinetic properties of loading contents, and achieve a targeted drug delivery with achievable modifications. Furthermore, therapeutic approaches based on combining nanoformulated drugs with novel immunotherapeutic agents are emerging. In this review, we discussed the recently developed nanotechnology-based strategies for treating blood and solid pediatric cancers.

7.
Abdom Radiol (NY) ; 46(7): 3288-3300, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33666735

RESUMO

PURPOSE: To evaluate the feasibility of Quantitative Ultrashort-Time-to-Echo Contrast-Enhanced (QUTE-CE) MRA using ferumoxytol as a contrast agent for abdominal angiography in the kidney. METHODS: Four subjects underwent ferumoxytol-enhanced MRA with the 3D UTE Spiral VIBE WIP sequence at 3 T. Image quality metrics were quantified, specifically the blood Signal-to-Noise Ratio (SNR), blood-tissue Contrast-to-Noise Ratio (CNR) and Intraluminal Signal Heterogeneity (ISH) from both the aorta and inferior vena cava (IVC). Morphometric analysis of the vessels was performed using manual approach and semi-automatic approach using Vascular Modeling ToolKit (VMTK). Image quality and branching order were compared between QUTE-CE MRA and the Gadolinium (Gd) CEMRA reference image. RESULTS: QUTE-CE MRA provides a bright blood snapshot that delineates arteries and veins equally in the same scan. The maximum SNR and CNR values were 3,282 ± 1,218 and 1,295 ± 580, respectively - significantly higher than available literature values using other CEMRA techniques. QUTE-CE MRA had lower ISH and depicted higher vessel branching order (7th vs 3rd) within the kidney compared to a standard dynamic clinical Gd CEMRA scan. Morphometric analysis yielded quantitative results for the total kidney volume, total cyst volume and for diameters of the branching arterial network down to the 7th branch. Vessel curvature was significantly increased (p < 0.001) in the presence of a renal cyst compared to equivalent vessels in normal kidney regions. CONCLUSION: QUTE-CE MRA is feasible for kidney angiography, providing greater detail of kidney vasculature, enabling quantitative morphometric analysis of the abdominal and intra-renal vessels and yielding metrics relevant to vascular diseases while using a contrast agent ferumoxytol that is safe for CKD patients.


Assuntos
Óxido Ferroso-Férrico , Angiografia por Ressonância Magnética , Meios de Contraste , Gadolínio , Humanos , Rim/diagnóstico por imagem
8.
Sci Rep ; 11(1): 1234, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33441637

RESUMO

Mutations in BRCA genes are the leading cause of hereditary breast cancer. Current options to prevent cancer in these high-risk patients, such as anti-estrogen drugs and radical mastectomy, are limited by lack of efficacy, undesirable toxicities, or physical and emotional challenges. We have previously shown that PARP inhibitors can significantly delay tumor development in BRCA1-deficient mice. Here, we fabricated the PARP inhibitor talazoparib (TLZ) into spacer implants (InCeT-TLZ) for localized and sustained delivery. We hypothesized that this novel formulation will provide an effective chemopreventive strategy with minimal toxicity. TLZ was released gradually over 30 days as implants degraded. InCeT-TLZ significantly decreased proliferation and increased DNA damage in the mammary glands of BRCA1-deficient mice. Notably, the number of mice that developed hyperplasia in the mammary glands was significantly lower with InCeT-TLZ treatment compared to the control group. Meanwhile, InCeT-TLZ was also better tolerated than oral TLZ, without loss of body weight or anemia. This study provides proof of concept for a novel and safe chemopreventive strategy using localized delivery of a PARP inhibitor for high-risk individuals. Future studies will directly evaluate the effects of InCeT-TLZ for preventing tumor development.


Assuntos
Proteína BRCA1/deficiência , Hiperplasia/metabolismo , Hiperplasia/prevenção & controle , Glândulas Mamárias Animais/efeitos dos fármacos , Ftalazinas/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Animais , Antineoplásicos/farmacologia , Proteína BRCA1/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Feminino , Glândulas Mamárias Animais/metabolismo , Camundongos , Mutação/efeitos dos fármacos
9.
Biophysicist (Rockv) ; 2(2): 28-32, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36909739

RESUMO

Demand for undergraduate research experiences typically outstrips the available laboratory positions, which could have been exacerbated during the remote work conditions imposed by the SARS-CoV-2/COVID-19 pandemic. This report presents a collection of examples of how undergraduates have been engaged in research under pandemic work restrictions. Examples include a range of projects related to fluid dynamics, cancer biology, nanomedicine, circadian clocks, metabolic disease, catalysis, and environmental remediation. Adaptations were made that included partnerships between remote and in-person research students and students taking on more data analysis and literature surveys, as well as data mining, computational, and informatics projects. In many cases, these projects engaged students who otherwise would have worked in traditional bench research, as some previously had. Several examples of beneficial experiences are reported, such as the additional time spent studying the literature, which gave students a heightened sense of project ownership, and more opportunities to integrate feedback into writing and research. Additionally, the more intentional and regular communication necessitated by remote work proved beneficial for all team members. Finally, online seminars and conferences have made participation possible for many more students, especially those at predominantly undergraduate institutions. Participants aim to adopt these beneficial practices in our research groups even after pandemic restrictions end.

10.
Front Chem ; 8: 594619, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33330383

RESUMO

A number of poly(ADP-ribose) polymerase (PARP) inhibitors have been recently approved for clinical use in BRCA mutated and other cancers. However, off-target toxicity of PARP inhibitors and the emergence of drug resistance following prolonged administration of these inhibitors indicate the need for improved methods of drug delivery to the tumors. Nanomedicines based upon nanoparticle formulations of conventional small molecule drugs and inhibitors offer many advantages, such as increased solubility and bioavailability of drugs, reduced toxicity and drug resistance, and improved tissue selectivity and therapeutic efficacy. This review highlights the current trends in formulations of PARP inhibitors developed by nanotechnology approaches and provides an insight into the applications and limitations of these PARP inhibitor nanomedicines for cancer therapies.

13.
Phys Med ; 76: 236-242, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32731132

RESUMO

PURPOSE: Tumor-associated antigens are a promising target of immunotherapy approaches for cancer treatments but rely on sufficient expression of the target antigen. This study investigates the expression of the carcinoembryonic antigen (CEA) on the surface of irradiated lung cancer cells in vitro using gold nanoparticles as radio-enhancer. METHODS: Human lung carcinoma cells A549 were irradiated and expression of CEA on the cell surface measured by flow cytometry 3 h, 24 h, and 72 h after irradiation to doses of 2 Gy, 6 Gy, 10 Gy, and 20 Gy in the presence or absence of 0.1 mg/ml or 0.5 mg/ml gold nanoparticles. CEA expression was measured as median fluorescent intensity and percentage of CEA-positive cells. RESULTS: An increase in CEA expression was observed with both increasing radiation dose and time. There was doubling in median fluorescent intensity 24 h after 20 Gy irradiation and 72 h after 6 Gy irradiation. Use of gold nanoparticles resulted in additional significant increase in CEA expression. Change in cell morphology included swelling of cells and increased internal complexity in accordance with change in CEA expression. CONCLUSIONS: This study showed an increase in CEA expression on human lung carcinoma cells following irradiation. Increase in expression was observed with increasing radiation dose and in a time dependent manner up to 72 h post irradiation. The results further showed that gold nanoparticles can significantly increase CEA expression following radiotherapy.


Assuntos
Neoplasias Pulmonares , Nanopartículas Metálicas , Antígeno Carcinoembrionário , Ouro , Humanos , Pulmão , Neoplasias Pulmonares/radioterapia
14.
PLoS One ; 15(7): e0236245, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32706818

RESUMO

We have previously demonstrated that endothelial targeting of gold nanoparticles followed by external beam irradiation can cause specific tumor vascular disruption in mouse models of cancer. The induced vascular damage may lead to changes in tumor physiology, including tumor hypoxia, thereby compromising future therapeutic interventions. In this study, we investigate the dynamic changes in tumor hypoxia mediated by targeted gold nanoparticles and clinical radiation therapy (RT). By using noninvasive whole-body fluorescence imaging, tumor hypoxia was measured at baseline, on day 2 and day 13, post-tumor vascular disruption. A 2.5-fold increase (P<0.05) in tumor hypoxia was measured two days after combined therapy, resolving by day 13. In addition, the combination of vascular-targeted gold nanoparticles and radiation therapy resulted in a significant (P<0.05) suppression of tumor growth. This is the first study to demonstrate the tumor hypoxic physiological response and recovery after delivery of vascular-targeted gold nanoparticles followed by clinical radiation therapy in a human non-small cell lung cancer athymic Foxn1nu mouse model.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Nanopartículas Metálicas/uso terapêutico , Hipóxia Tumoral , Células A549 , Animais , Carcinoma Pulmonar de Células não Pequenas/irrigação sanguínea , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Ouro/uso terapêutico , Humanos , Neoplasias Pulmonares/irrigação sanguínea , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/radioterapia , Camundongos , Camundongos Nus , Imagem Óptica/métodos , Hipóxia Tumoral/efeitos dos fármacos , Hipóxia Tumoral/efeitos da radiação , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Phys Med Biol ; 65(21): 21RM02, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-32380492

RESUMO

This roadmap outlines the potential roles of metallic nanoparticles (MNPs) in the field of radiation therapy. MNPs made up of a wide range of materials (from Titanium, Z = 22, to Bismuth, Z = 83) and a similarly wide spectrum of potential clinical applications, including diagnostic, therapeutic (radiation dose enhancers, hyperthermia inducers, drug delivery vehicles, vaccine adjuvants, photosensitizers, enhancers of immunotherapy) and theranostic (combining both diagnostic and therapeutic), are being fabricated and evaluated. This roadmap covers contributions from experts in these topics summarizing their view of the current status and challenges, as well as expected advancements in technology to address these challenges.


Assuntos
Nanopartículas Metálicas/uso terapêutico , Nanomedicina Teranóstica/métodos , Humanos , Hipertermia Induzida
16.
Sci Rep ; 9(1): 15844, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31676822

RESUMO

Effective drug delivery is restricted by pathophysiological barriers in solid tumors. In human pancreatic adenocarcinoma, poorly-permeable blood vessels limit the intratumoral permeation and penetration of chemo or nanotherapeutic drugs. New and clinically viable strategies are urgently sought to breach the neoplastic barriers that prevent effective drug delivery. Here, we present an original idea to boost drug delivery by selectively knocking down the tumor vascular barrier in a human pancreatic cancer model. Clinical radiation activates the tumor endothelial-targeted gold nanoparticles to induce a physical vascular damage due to the high photoelectric interactions. Active modulation of these tumor neovessels lead to distinct changes in tumor vascular permeability. Noninvasive MRI and fluorescence studies, using a short-circulating nanocarrier with MR-sensitive gadolinium and a long-circulating nanocarrier with fluorescence-sensitive nearinfrared dye, demonstrate more than two-fold increase in nanodrug delivery, post tumor vascular modulation. Functional changes in altered tumor blood vessels and its downstream parameters, particularly, changes in Ktrans (permeability), Kep (flux rate), and Ve (extracellular interstitial volume), reflect changes that relate to augmented drug delivery. The proposed dual-targeted therapy effectively invades the tumor vascular barrier and improve nanodrug delivery in a human pancreatic tumor model and it may also be applied to other nonresectable, intransigent tumors that barely respond to standard drug therapies.


Assuntos
Sistemas de Liberação de Medicamentos , Ouro , Células Endoteliais da Veia Umbilical Humana/metabolismo , Angiografia por Ressonância Magnética , Nanopartículas Metálicas , Neoplasias Experimentais , Neovascularização Patológica , Imagem Óptica , Animais , Linhagem Celular Tumoral , Ouro/química , Ouro/farmacocinética , Ouro/farmacologia , Humanos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Camundongos , Neoplasias Experimentais/irrigação sanguínea , Neoplasias Experimentais/diagnóstico por imagem , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neovascularização Patológica/diagnóstico por imagem , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo
17.
Theranostics ; 9(21): 6224-6238, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31534547

RESUMO

Two recently approved PARP inhibitors provide an important new therapeutic option for patients with BRCA-mutated metastatic breast cancer. PARP inhibitors significantly prolong progression-free survival in patients, but conventional oral delivery of PARP inhibitors is hindered by limited bioavailability and off-target toxicities, thus compromising the therapeutic benefits and quality of life for patients. Here, we developed a new delivery system, in which the PARP inhibitor Talazoparib is encapsulated in the bilayer of a nano-liposome, to overcome these limitations. Methods: Nano-Talazoparib (NanoTLZ) was characterized both in vitro and in vivo. The therapeutic efficacy and toxicity of Nano-Talazoparib (NanoTLZ) were evaluated in BRCA-deficient mice. The regulation of NanoTLZ on gene transcription and immunomodulation were further investigated in spontaneous BRCA-deficient tumors. Results: NanoTLZ significantly (p<0.05) prolonged the overall survival of BRCA-deficient mice compared to all of the other experimental groups, including saline control, empty nanoparticles, and free Talazoparib groups (oral and i.v.). Moreover, NanoTLZ was better tolerated than treatment with free Talazoparib, with no significant weight lost or alopecia as was observed with the free drug. After 5 doses, NanoTLZ altered the expression of over 140 genes and induced DNA damage, cell cycle arrest and inhibition of cell proliferation in the tumor. In addition, NanoTLZ favorably modulated immune cell populations in vivo and significantly (p<0.05) decreased the percentage of myeloid derived suppressor cells in both the tumor and spleen compared to control groups. Conclusions: Our results demonstrate that delivering nanoformulated Talazoparib not only enhances treatment efficacy but also reduces off-target toxicities in BRCA-deficient mice; the same potential is predicted for patients with BRCA-deficient breast cancer.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Lipossomos/administração & dosagem , Neoplasias Mamárias Experimentais/tratamento farmacológico , Nanopartículas/administração & dosagem , Inibidores de Poli(ADP-Ribose) Polimerases/administração & dosagem , Animais , Proteína BRCA1/genética , Proteína BRCA2/genética , Composição de Medicamentos , Feminino , Humanos , Imunomodulação , Camundongos , Ftalazinas , Resultado do Tratamento
18.
Front Oncol ; 9: 353, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31134152

RESUMO

Talazoparib, a potent PARP inhibitor, induces synthetic lethality in BRCA-deficient cancers making it an attractive candidate for ovarian cancer treatment. However, its potency lends itself to side effects associated more closely with traditional chemotherapeutics than other clinically approved PARP inhbitors. We sought to formulate Talazoparib in a nanoparticle delivery system, which allows the drug to be administered intraperitoneally. This was done to specifically target peritoneal dissemination of late stage metastatic ovarian cancer and increase talazoparib's therapeutic efficacy while minimizing toxic side effects. NanoTalazoparib was developed and characterized with regard to its size, loading, and surface charge. Talazoparib and NanoTalazoparib were tested on a panel of murine and human BRCA cell lines and the dose response was compared to Olaparib's, the currently used PARP inhibitor. Therapeutic efficacy was tested in vivo in a Brca peritoneal cancer model that mimics late stage disseminated disease. NanoTalazoparib has a diameter of about 70 nm with a neutral surface charge and ~75% encapsulation efficiency, which slowly releases the drug over several hours. Dose response analysis indicated that the murine cell lines with conditional BRCA1/2, PTEN, and TP53 deletions had the lowest IC50s. NanoTalazoparib administered on a schedule of three doses weekly slowed disease progression and resulted in significantly less mice with ascites at the end point compared to controls. These results indicate that the slow release nanoformulation, NanoTalazoparib, effectively delivers PARP inhibitor therapy to the peritoneal cavity for disseminated cancer treatment. The ability to decrease ascites formation with the introduction of intraperitoneal NanoTalazoparib suggests this treatment may be an effective way to treat ovarian cancer-associated ascites and slow disease progression.

19.
Front Oncol ; 9: 1416, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31921673

RESUMO

The Pediatric Preclinical Testing Program previously identified the PARP inhibitor talazoparib (TLZ) as a means to potentiate temozolomide (TMZ) activity for the treatment of Ewing sarcoma. However, the combination of TLZ and TMZ has been toxic in both preclinical and clinical testing, necessitating TMZ dose reduction to ~15% of the single agent maximum tolerated dose. We have synthesized a nanoparticle formulation of talazoparib (NanoTLZ) to be administered intravenously in an effort to modulate the toxicity profile of this combination treatment. Results in Ewing sarcoma xenograft models are presented to demonstrate the utility of this delivery method both alone and in combination with TMZ. NanoTLZ reduced gross toxicity and had a higher maximum tolerated dose than oral TLZ. The dose of TMZ did not have to be reduced when combined with NanoTLZ as was required when combined with oral TLZ. This indicated the NanoTLZ delivery system may be advantageous in decreasing the systemic toxicity associated with the combination of oral TLZ and TMZ.

20.
Int J Nanomedicine ; 13: 8063-8074, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30555227

RESUMO

BACKGROUND: PARP inhibitors, such as Olaparib, have advanced the treatment of ovarian cancer by providing patients with an effective and molecularly-targeted maintenance therapy. However, all orally-administered drugs, including Olaparib, must undergo first-pass metabolism. In contrast, a nanoparticle delivery system has the advantage of administering Olaparib directly into the peritoneal cavity for local treatment. Consequently, we sought to optimize the sustained-release formulation NanoOlaparib, previously deemed effective as an intravenous solid tumor treatment, for the local treatment of disseminated disease via intraperitoneal (i.p.) therapy. METHODS: The tumor cell line 404, which was derived from a Brca2 -/-, Tp53 -/-, Pten -/- genetically engineered mouse model, exhibited high sensitivity to Olaparib in vitro. It was chosen for use in developing an i.p. spread xenograft for testing nanotherapy efficacy in vivo. NanoOlaparib as a monotherapy or in combination with cisplatin was compared to oral Olaparib alone or in combination using two different dose schedules. A pilot biodistribution study was performed to determine drug accumulation in various organs following i.p. administration. RESULTS: Daily administration of NanoOlaparib reduced tumor growth and decreased the variability of the treatment response observed with daily oral Olaparib administration. However, systemic toxicity was observed in both the NanoOlaparib and vehicle (empty nanoparticle) treated groups. Scaling back the administration to twice weekly was well tolerated up to 100 mg/kg but reduced the effect on tumor growth. Biodistribution profiles indicated that NanoOlaparib began accumulating in tissues within an hour of administration and persisted for at least 72 hours after a single dose, exiting the peritoneal cavity faster than expected. CONCLUSION: NanoOlaparib must be modified for use against disseminated disease. Future avenues to develop NanoOlaparib as an i.p. therapy include a modified surface-coating to retain it in the peritoneal cavity and prevent entry into systemic circulation, in addition to targeting moieties for localization in tumor cells.


Assuntos
Antineoplásicos/administração & dosagem , Proliferação de Células/efeitos dos fármacos , Nanopartículas/administração & dosagem , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Peritoneais/tratamento farmacológico , Ftalazinas/administração & dosagem , Piperazinas/administração & dosagem , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Proteína BRCA2/fisiologia , Feminino , Humanos , Injeções Intraperitoneais , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Terapia de Alvo Molecular , Nanopartículas/química , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , PTEN Fosfo-Hidrolase/fisiologia , Neoplasias Peritoneais/metabolismo , Neoplasias Peritoneais/secundário , Ftalazinas/farmacocinética , Ftalazinas/farmacologia , Piperazinas/farmacocinética , Piperazinas/farmacologia , Distribuição Tecidual , Células Tumorais Cultivadas , Proteína Supressora de Tumor p53/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA