Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Oral Dis ; 30(2): 537-550, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36650945

RESUMO

OBJECTIVES: To identify etiologic variants and perform deep dental phenotyping in patients with amelogenesis imperfecta (AI). METHODS: Three patients of two unrelated families were evaluated. Genetic variants were investigated by exome and Sanger sequencing. An unerupted permanent third molar (AI1) from Patient1 and a deciduous first molar (AI2) from Patient2, along with three tooth-type matched controls for each were characterized. RESULTS: All three patients harbored biallelic pathogenic variants in FAM20A, indicating AI1G. Of the four identified variants, one, c.1231C > T p.(Arg411Trp), was novel. Patient1 possessed the largest deletion, 7531 bp, ever identified in FAM20A. In addition to hypoplastic enamel, multiple impacted teeth, intrapulpal calcification, pericoronal radiolucencies, malocclusion, and periodontal infections were found in all three patients, gingival hyperplasia in Patient1 and Patient2, and alveolar bone exostosis in Patient3. Surface roughness was increased in AI1 but decreased in AI2. Decreased enamel mineral density, hardness, and elastic modulus were observed in AI1 enamel and dentin and AI2 dentin, along with decreased phosphorus, increased carbon, and increased calcium/phosphorus and carbon/oxygen ratios. Severely collapsed enamel rods and disorganized dentin-enamel junction were observed. CONCLUSIONS: We report a novel FAM20A variant and, for the first time, the defective mineral composition and physical/mechanical properties of AI1G teeth.


Assuntos
Amelogênese Imperfeita , Proteínas do Esmalte Dentário , Humanos , Amelogênese Imperfeita/genética , Amelogênese Imperfeita/patologia , Mutação , Proteínas do Esmalte Dentário/genética , Fósforo , Minerais , Carbono
2.
Artigo em Inglês | MEDLINE | ID: mdl-33737018

RESUMO

OBJECTIVE: Dentinogenesis imperfecta (DI) requires dental treatment. This study investigated the characteristics of DI teeth associated with osteogenesis imperfecta (OI) and COL1A2 mutations. STUDY DESIGN: Whole exome and Sanger sequencing were performed. Three primary teeth (called "OIDI teeth") obtained from 3 unrelated COL1A2 patients were investigated and compared with 9 control teeth from age-matched healthy individuals using colorimetry, micro-computed tomography, Knoop microhardness, energy dispersive X-ray spectroscopy, scanning electron microscopy, and histology. RESULTS: All patients were identified with heterozygous glycine substitutions in COL1A2. The COL1A2 mutations, c.1531G>T and c.2027G>T, were de novo, whereas c.3106G>C was inherited. OIDI1, 2, and 3 teeth had a substantial decrease in dentin microhardness and lightness. OIDI2 enamel microhardness was significantly reduced, whereas OIDI1 and 3 had enamel microhardness comparable to that of control individuals. The OIDI1 pulp cavity was large; OIDI2 was narrow; and OIDI3 was obliterated. OIDI1 and 3 had significantly higher carbon levels than those in control individuals. Numerous ectopic calcified masses, sparse and obstructed dentinal tubules, dentin holes, and collagen disorientation were observed. CONCLUSIONS: OIDI teeth had reduced lightness and variable pulp morphology. Weak dentin, mineral disproportion, and abnormal ultrastructure could contribute to the brittleness of OIDI teeth and adhesive restoration failure. Here, we expand the phenotypic spectrum of COL1A2 mutations and raise awareness among dentists seeing patients with OI.


Assuntos
Dentinogênese Imperfeita , Osteogênese Imperfeita , Colágeno Tipo I/genética , Dentina , Dentinogênese Imperfeita/genética , Humanos , Mutação , Osteogênese Imperfeita/diagnóstico por imagem , Osteogênese Imperfeita/genética , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA