Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Circ Res ; 130(7): 981-993, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35209718

RESUMO

BACKGROUND: B1a and B1b lymphocytes produce IgM that inactivates oxidation-specific epitopes (IgMOSE) on LDL (low-density lipoprotein) and protects against atherosclerosis. Loss of ID3 (inhibitor of differentiation 3) in B cells selectively promotes B1b but not B1a cell numbers, leading to higher IgMOSE production and reduction in atherosclerotic plaque formation. Yet, the mechanism underlying this regulation remains unexplored. METHODS: Bulk RNA sequencing was utilized to identify differentially expressed genes in B1a and B1b cells from Id3KO and Id3WT mice. CRISPR/Cas9 and lentiviral genome editing coupled with adoptive transfer were used to identify key Id3-dependent signaling pathways regulating B1b cell proliferation and the impact on atherosclerosis. Biospecimens from humans with advanced coronary artery disease imaging were analyzed to translate murine findings to human subjects with coronary artery disease. RESULTS: Through RNA sequencing, P62 was found to be enriched in Id3KO B1b cells. Further in vitro characterization reveals a novel role for P62 in mediating BAFF (B-cell activating factor)-induced B1b cell proliferation through interacting with TRAF6 (tumor necrosis factor receptor 6) and activating NF-κB (nuclear factor kappa B), leading to subsequent C-MYC (C-myelocytomatosis) upregulation. Promoter-reporter assays reveal that Id3 inhibits the E2A protein from activating the P62 promoter. Mice adoptively transferred with B1 cells overexpressing P62 exhibited an increase in B1b cell number and IgMOSE levels and were protected against atherosclerosis. Consistent with murine mechanistic findings, P62 expression in human B1 cells was significantly higher in subjects harboring a function-impairing single nucleotide polymorphism (SNP) at rs11574 position in the ID3 gene and directly correlated with plasma IgMOSE levels. CONCLUSIONS: This study unveils a novel role for P62 in driving BAFF-induced B1b cell proliferation and IgMOSE production to attenuate diet-induced atherosclerosis. Results identify a direct role for Id3 in antagonizing E2A from activating the p62 promoter. Moreover, analysis of putative human B1 cells also implicates these pathways in coronary artery disease subjects, suggesting P62 as a new immunomodulatory target for treating atherosclerosis.


Assuntos
Aterosclerose , Subpopulações de Linfócitos B , Animais , Aterosclerose/genética , Aterosclerose/patologia , Aterosclerose/prevenção & controle , Subpopulações de Linfócitos B/metabolismo , Linfócitos B/metabolismo , Humanos , Imunoglobulina M , Camundongos , Camundongos Knockout
2.
Am J Pathol ; 191(12): 2231-2244, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34509440

RESUMO

B cell-activating factor (BAFF), part of a tumor necrosis factor family of cytokines, was recently identified as a regulator of atherosclerosis; however, its role in aortic aneurysm has not been determined. Here, the study examined the effect of selective BAFF antagonism using an anti-BAFF antibody (blocks binding of BAFF to receptors BAFF receptor 3, transmembrane activator and CAML interactor, and B-cell maturation antigen) and mBaffR-mFc (blocks binding of BAFF to BAFF receptor 3) on a murine model of abdominal aortic aneurysm (AAA). In a prevention strategy, the antagonists were injected before the induction of AAA, and in an intervention strategy, the antagonists were injected after the induction of AAA. Both strategies attenuated the formation of AAA. In the intervention group, BAFF antagonism depleted most of the mature B-cell subsets in spleen and circulation, leading to enhanced resolution of inflammation in AAA as indicated by decreased infiltration of B cells and proinflammatory macrophages and a reduced number of apoptotic cells. In AAA tissues, B cells and macrophages were found in close contact. In vitro, B cells, irrespective of treatment with BAFF, impaired the efferocytosis activity of macrophages, suggesting a direct innate role of B cells on macrophage function. Altogether, BAFF antagonism affects survival of the mature B cells, promotes resolution of inflammation in the aorta, and attenuates the growth of AAA in mice.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Aneurisma da Aorta Abdominal/terapia , Fator Ativador de Células B/antagonistas & inibidores , Animais , Anticorpos Monoclonais/farmacologia , Aneurisma da Aorta Abdominal/genética , Aneurisma da Aorta Abdominal/imunologia , Aneurisma da Aorta Abdominal/patologia , Fator Ativador de Células B/genética , Fator Ativador de Células B/imunologia , Fator Ativador de Células B/fisiologia , Subpopulações de Linfócitos B/patologia , Contagem de Células , Células Cultivadas , Quimiotaxia de Leucócito/fisiologia , Modelos Animais de Doenças , Progressão da Doença , Humanos , Fragmentos Fc das Imunoglobulinas/farmacologia , Fragmentos Fc das Imunoglobulinas/uso terapêutico , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
3.
Front Immunol ; 12: 636013, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33679793

RESUMO

Chemokine receptor-6 (CCR6) mediates immune cell recruitment to inflammatory sites and has cell type-specific effects on diet-induced atherosclerosis in mice. Previously we showed that loss of CCR6 in B cells resulted in loss of B cell-mediated atheroprotection, although the B cell subtype mediating this effect was unknown. Perivascular adipose tissue (PVAT) harbors high numbers of B cells including atheroprotective IgM secreting B-1 cells. Production of IgM antibodies is a major mechanism whereby B-1 cells limit atherosclerosis development. Yet whether CCR6 regulates B-1 cell number and production of IgM in the PVAT is unknown. In this present study, flow cytometry experiments demonstrated that both B-1 and B-2 cells express CCR6, albeit at a higher frequency in B-2 cells in both humans and mice. Nevertheless, B-2 cell numbers in peritoneal cavity (PerC), spleen, bone marrow and PVAT were no different in ApoE-/-CCR6-/- compared to ApoE-/-CCR6+/+ mice. In contrast, the numbers of atheroprotective IgM secreting B-1 cells were significantly lower in the PVAT of ApoE-/-CCR6-/- compared to ApoE-/-CCR6+/+ mice. Surprisingly, adoptive transfer (AT) of CD43- splenic B cells into B cell-deficient µMT-/-ApoE-/- mice repopulated the PerC with B-1 and B-2 cells and reduced atherosclerosis when transferred into ApoE-/-CCR6+/+sIgM-/- mice only when those cells expressed both CCR6 and sIgM. CCR6 expression on circulating human B cells in subjects with a high level of atherosclerosis in their coronary arteries was lower only in the putative human B-1 cells. These results provide evidence that B-1 cell CCR6 expression enhances B-1 cell number and IgM secretion in PVAT to provide atheroprotection in mice and suggest potential human relevance to our murine findings.


Assuntos
Tecido Adiposo/patologia , Aterosclerose/imunologia , Subpopulações de Linfócitos B/imunologia , Vasos Coronários/patologia , Receptores CCR6/metabolismo , Animais , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Movimento Celular , Células Cultivadas , Resistência à Doença , Citometria de Fluxo , Humanos , Imunoglobulina M/metabolismo , Camundongos , Camundongos Knockout , Receptores CCR6/genética
4.
Arterioscler Thromb Vasc Biol ; 40(5): 1110-1122, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32131612

RESUMO

The immune system plays an important role in obesity-induced adipose tissue inflammation and the resultant metabolic dysfunction, which can lead to hypertension, dyslipidemia, and insulin resistance and their downstream sequelae of type 2 diabetes mellitus and cardiovascular disease. While macrophages are the most abundant immune cell type in adipose tissue, other immune cells are also present, such as B cells, which play important roles in regulating adipose tissue inflammation. This brief review will overview B-cell subsets, describe their localization in various adipose depots and summarize our knowledge about the function of these B-cell subsets in regulating adipose tissue inflammation, obesity-induced metabolic dysfunction and atherosclerosis.


Assuntos
Tecido Adiposo/imunologia , Aterosclerose/imunologia , Subpopulações de Linfócitos B/imunologia , Paniculite/imunologia , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Animais , Anti-Inflamatórios/uso terapêutico , Aterosclerose/diagnóstico , Aterosclerose/metabolismo , Aterosclerose/terapia , Autoimunidade , Subpopulações de Linfócitos B/efeitos dos fármacos , Subpopulações de Linfócitos B/metabolismo , Subpopulações de Linfócitos B/patologia , Comunicação Celular , Citocinas/imunologia , Citocinas/metabolismo , Humanos , Imunoterapia , Mediadores da Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Paniculite/diagnóstico , Paniculite/metabolismo , Paniculite/terapia , Fenótipo , Transdução de Sinais
5.
Theranostics ; 10(2): 585-601, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31903139

RESUMO

Macrophages are important regulators of obesity-associated inflammation and PPARα and -γ agonism in macrophages has anti-inflammatory effects. In this study, we tested the efficacy with which liposomal delivery could target the PPARα/γ dual agonist tesaglitazar to macrophages while reducing drug action in common sites of drug toxicity: the liver and kidney, and whether tesaglitazar had anti-inflammatory effects in an in vivo model of obesity-associated dysmetabolism. Methods: Male leptin-deficient (ob/ob) mice were administered tesaglitazar or vehicle for one week in a standard oral formulation or encapsulated in liposomes. Following the end of treatment, circulating metabolic parameters were measured and pro-inflammatory adipose tissue macrophage populations were quantified by flow cytometry. Cellular uptake of liposomes in tissues was assessed using immunofluorescence and a broad panel of cell subset markers by flow cytometry. Finally, PPARα/γ gene target expression levels in the liver, kidney, and sorted macrophages were quantified to determine levels of drug targeting to and drug action in these tissues and cells. Results: Administration of a standard oral formulation of tesaglitazar effectively treated symptoms of obesity-associated dysmetabolism and reduced the number of pro-inflammatory adipose tissue macrophages. Macrophages are the major cell type that took up liposomes with many other immune and stromal cell types taking up liposomes to a lesser extent. Liposome delivery of tesaglitazar did not have effects on inflammatory macrophages nor did it improve metabolic parameters to the extent of a standard oral formulation. Liposomal delivery did, however, attenuate effects on liver weight and liver and kidney expression of PPARα and -γ gene targets compared to oral delivery. Conclusions: These findings reveal for the first time that tesaglitazar has anti-inflammatory effects on adipose tissue macrophage populations in vivo. These data also suggest that while nanoparticle delivery reduced off-target effects, yet the lack of tesaglitazar actions in non-targeted cells such (as hepatocytes and adipocytes) and the uptake of drug-loaded liposomes in many other cell types, albeit to a lesser extent, may have impacted overall therapeutic efficacy. This fulsome analysis of cellular uptake of tesaglitazar-loaded liposomes provides important lessons for future studies of liposome drug delivery.


Assuntos
Alcanossulfonatos/farmacologia , Rim/efeitos dos fármacos , Lipossomos/administração & dosagem , Fígado/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Obesidade/tratamento farmacológico , PPAR alfa/agonistas , PPAR gama/agonistas , Fenilpropionatos/farmacologia , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Dieta Hiperlipídica , Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos , Inflamação/metabolismo , Rim/metabolismo , Lipossomos/química , Fígado/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/metabolismo , Obesidade/patologia
6.
Circ Res ; 125(10): e55-e70, 2019 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-31549940

RESUMO

RATIONALE: B-1 cell-derived natural IgM antibodies against oxidation-specific epitopes on low-density lipoprotein are anti-inflammatory and atheroprotective. Bone marrow (BM) B-1a cells contribute abundantly to IgM production, yet the unique repertoire of IgM antibodies generated by BM B-1a and the factors maintaining the BM B-1a population remain unexplored. CXCR4 (C-X-C motif chemokine receptor 4) has been implicated in human cardiovascular disease and B-cell homeostasis, yet the role of B-1 cell CXCR4 in regulating atheroprotective IgM levels and human cardiovascular disease is unknown. OBJECTIVE: To characterize the BM B-1a IgM repertoire and to determine whether CXCR4 regulates B-1 production of atheroprotective IgM in mice and humans. METHODS AND RESULTS: Single-cell sequencing demonstrated that BM B-1a cells from aged ApoE-/- mice with established atherosclerosis express a unique repertoire of IgM antibodies containing increased nontemplate-encoded nucleotide additions and a greater frequency of unique heavy chain complementarity determining region 3 sequences compared with peritoneal cavity B-1a cells. Some complementarity determining region 3 sequences were common to both compartments suggesting B-1a migration between compartments. Indeed, mature peritoneal cavity B-1a cells migrated to BM in a CXCR4-dependent manner. Furthermore, BM IgM production and plasma IgM levels were reduced in ApoE-/- mice with B-cell-specific knockout of CXCR4, and overexpression of CXCR4 on B-1a cells increased BM localization and plasma IgM against oxidation specific epitopes, including IgM specific for malondialdehyde-modified LDL (low-density lipoprotein). Finally, in a 50-subject human cohort, we find that CXCR4 expression on circulating human B-1 cells positively associates with plasma levels of IgM antibodies specific for malondialdehyde-modified LDL and inversely associates with human coronary artery plaque burden and necrosis. CONCLUSIONS: These data provide the first report of a unique BM B-1a cell IgM repertoire and identifies CXCR4 expression as a critical factor selectively governing BM B-1a localization and production of IgM against oxidation specific epitopes. That CXCR4 expression on human B-1 cells was greater in humans with low coronary artery plaque burden suggests a potential targeted approach for immune modulation to limit atherosclerosis.


Assuntos
Subpopulações de Linfócitos B/metabolismo , Células da Medula Óssea/metabolismo , Doença da Artéria Coronariana/sangue , Imunoglobulina M/sangue , Receptores CXCR4/biossíntese , Receptores CXCR4/sangue , Animais , Doença da Artéria Coronariana/patologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
7.
Arterioscler Thromb Vasc Biol ; 36(11): 2191-2202, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27634836

RESUMO

OBJECTIVE: B-cell depletion therapy is widely used for treatment of cancers and autoimmune diseases. B cells are abundant in abdominal aortic aneurysms (AAA); however, it is unknown whether B-cell depletion therapy affects AAA growth. Using experimental models of murine AAA, we aim to examine the effect of B-cell depletion on AAA formation. APPROACH AND RESULTS: Wild-type or apolipoprotein E-knockout mice were treated with mouse monoclonal anti-CD20 or control antibodies and subjected to an elastase perfusion or angiotensin II infusion model to induce AAA, respectively. Anti-CD20 antibody treatment significantly depleted B1 and B2 cells, and strikingly suppressed AAA growth in both models. B-cell depletion resulted in lower circulating IgM levels, but did not affect the levels of IgG or cytokine/chemokine levels. Although the total number of leukocyte remained unchanged in elastase-perfused aortas after anti-CD20 antibody treatment, the number of B-cell subtypes was significantly lower. Interestingly, plasmacytoid dendritic cells expressing the immunomodulatory enzyme indole 2,3-dioxygenase were detected in the aortas of B-cell-depleted mice. In accordance with an increase in indole 2,3-dioxygenase+ plasmacytoid dendritic cells, the number of regulatory T cells was higher, whereas the expression of proinflammatory genes was lower in aortas of B-cell-depleted mice. In a coculture model, the presence of B cells significantly lowered the number of indole 2,3-dioxygenase+ plasmacytoid dendritic cells without affecting total plasmacytoid dendritic cell number. CONCLUSIONS: The present results demonstrate that B-cell depletion protects mice from experimental AAA formation and promotes emergence of an immunosuppressive environment in aorta.


Assuntos
Anticorpos/farmacologia , Aorta Abdominal/efeitos dos fármacos , Aneurisma da Aorta Abdominal/prevenção & controle , Linfócitos B/efeitos dos fármacos , Depleção Linfocítica/métodos , Angiotensina II , Animais , Antígenos CD20/imunologia , Antígenos CD20/metabolismo , Aorta Abdominal/imunologia , Aorta Abdominal/metabolismo , Aorta Abdominal/patologia , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/imunologia , Aneurisma da Aorta Abdominal/metabolismo , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Linfócitos B/imunologia , Linfócitos B/metabolismo , Biomarcadores/sangue , Células Cultivadas , Microambiente Celular , Técnicas de Cocultura , Citocinas/sangue , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Modelos Animais de Doenças , Regulação para Baixo , Predisposição Genética para Doença , Imunoglobulina M/sangue , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Mediadores da Inflamação/sangue , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Elastase Pancreática , Fenótipo , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo
8.
Arterioscler Thromb Vasc Biol ; 36(4): 682-91, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26868208

RESUMO

OBJECTIVE: Little is known about the role(s) B cells play in obesity-induced metabolic dysfunction. This study used a mouse with B-cell-specific deletion of Id3 (Id3(Bcell KO)) to identify B-cell functions involved in the metabolic consequences of obesity. APPROACH AND RESULTS: Diet-induced obese Id3(Bcell KO) mice demonstrated attenuated inflammation and insulin resistance in visceral adipose tissue (VAT), and improved systemic glucose tolerance. VAT in Id3(Bcell KO) mice had increased B-1b B cells and elevated IgM natural antibodies to oxidation-specific epitopes. B-1b B cells reduced cytokine production in VAT M1 macrophages, and adoptively transferred B-1b B cells trafficked to VAT and produced natural antibodies for the duration of 13-week studies. B-1b B cells null for Id3 demonstrated increased proliferation, established larger populations in Rag1(-/-) VAT, and attenuated diet-induced glucose intolerance and VAT insulin resistance in Rag1(-/-) hosts. However, transfer of B-1b B cells unable to secrete IgM had no effect on glucose tolerance. In an obese human population, results provided the first evidence that B-1 cells are enriched in human VAT and IgM antibodies to oxidation-specific epitopes inversely correlated with inflammation and insulin resistance. CONCLUSIONS: NAb-producing B-1b B cells are increased in Id3(Bcell KO) mice and attenuate adipose tissue inflammation and glucose intolerance in diet-induced obese mice. Additional findings are the first to identify VAT as a reservoir for human B-1 cells and to link anti-inflammatory IgM antibodies with reduced inflammation and improved metabolic phenotype in obese humans.


Assuntos
Subpopulações de Linfócitos B/metabolismo , Intolerância à Glucose/prevenção & controle , Cadeias mu de Imunoglobulina/metabolismo , Inflamação/prevenção & controle , Resistência à Insulina , Gordura Intra-Abdominal/metabolismo , Obesidade/complicações , Transferência Adotiva , Animais , Subpopulações de Linfócitos B/imunologia , Subpopulações de Linfócitos B/transplante , Biomarcadores/sangue , Glicemia/metabolismo , Células Cultivadas , Citocinas/metabolismo , Modelos Animais de Doenças , Genótipo , Intolerância à Glucose/sangue , Intolerância à Glucose/genética , Intolerância à Glucose/imunologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Cadeias mu de Imunoglobulina/genética , Cadeias mu de Imunoglobulina/imunologia , Inflamação/sangue , Inflamação/genética , Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Proteínas Inibidoras de Diferenciação/genética , Proteínas Inibidoras de Diferenciação/metabolismo , Insulina/sangue , Gordura Intra-Abdominal/imunologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/sangue , Obesidade/genética , Obesidade/imunologia , Fenótipo , Fatores de Tempo , Técnicas de Cultura de Tecidos
9.
Circ Res ; 117(3): e28-39, 2015 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-26082558

RESUMO

RATIONALE: B cells contribute to atherosclerosis through subset-specific mechanisms. Whereas some controversy exists about the role of B-2 cells, B-1a cells are atheroprotective because of secretion of atheroprotective IgM antibodies independent of antigen. B-1b cells, a unique subset of B-1 cells that respond specifically to T-cell-independent antigens, have not been studied within the context of atherosclerosis. OBJECTIVE: To determine whether B-1b cells produce atheroprotective IgM antibodies and function to protect against diet-induced atherosclerosis. METHODS AND RESULTS: We demonstrate that B-1b cells are sufficient to produce IgM antibodies against oxidation-specific epitopes on low-density lipoprotein both in vitro and in vivo. In addition, we demonstrate that B-1b cells provide atheroprotection after adoptive transfer into B- and T-cell deficient (Rag1(-/-)Apoe(-/-)) hosts. We implicate inhibitor of differentiation 3 (Id3) in the regulation of B-1b cells as B-cell-specific Id3 knockout mice (Id3(BKO)Apoe(-/-)) have increased numbers of B-1b cells systemically, increased titers of oxidation-specific epitope-reactive IgM antibodies, and significantly reduced diet-induced atherosclerosis when compared with Id3(WT)Apoe(-/-) controls. Finally, we report that the presence of a homozygous single nucleotide polymorphism in ID3 in humans that attenuates Id3 function is associated with an increased percentage of circulating B-1 cells and anti-malondialdehyde-low-density lipoprotein IgM suggesting clinical relevance. CONCLUSIONS: These results provide novel evidence that B-1b cells produce atheroprotective oxidation-specific epitope-reactive IgM antibodies and protect against atherosclerosis in mice and suggest that similar mechanisms may occur in humans.


Assuntos
Aterosclerose/imunologia , Subpopulações de Linfócitos B/imunologia , Imunoglobulina M/imunologia , Lipoproteínas LDL/imunologia , Malondialdeído/análogos & derivados , Transferência Adotiva , Animais , Especificidade de Anticorpos , Aorta/patologia , Apolipoproteínas E/deficiência , Aterosclerose/sangue , Aterosclerose/genética , Aterosclerose/patologia , Aterosclerose/prevenção & controle , Subpopulações de Linfócitos B/transplante , Células Cultivadas , Colesterol/sangue , Cobre/imunologia , Dieta Ocidental/efeitos adversos , Epitopos/imunologia , Proteínas de Homeodomínio/genética , Humanos , Proteínas Inibidoras de Diferenciação/deficiência , Proteínas Inibidoras de Diferenciação/genética , Proteínas Inibidoras de Diferenciação/fisiologia , Lipoproteínas LDL/química , Contagem de Linfócitos , Masculino , Malondialdeído/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/fisiologia , Oxirredução , Placa Aterosclerótica/patologia , Polimorfismo de Nucleotídeo Único , Receptor 4 Toll-Like/imunologia
10.
Immunity ; 42(6): 1100-15, 2015 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-26084025

RESUMO

Tertiary lymphoid organs (TLOs) emerge during nonresolving peripheral inflammation, but their impact on disease progression remains unknown. We have found in aged Apoe(-/-) mice that artery TLOs (ATLOs) controlled highly territorialized aorta T cell responses. ATLOs promoted T cell recruitment, primed CD4(+) T cells, generated CD4(+), CD8(+), T regulatory (Treg) effector and central memory cells, converted naive CD4(+) T cells into induced Treg cells, and presented antigen by an unusual set of dendritic cells and B cells. Meanwhile, vascular smooth muscle cell lymphotoxin ß receptors (VSMC-LTßRs) protected against atherosclerosis by maintaining structure, cellularity, and size of ATLOs though VSMC-LTßRs did not affect secondary lymphoid organs: Atherosclerosis was markedly exacerbated in Apoe(-/-)Ltbr(-/-) and to a similar extent in aged Apoe(-/-)Ltbr(fl/fl)Tagln-cre mice. These data support the conclusion that the immune system employs ATLOs to organize aorta T cell homeostasis during aging and that VSMC-LTßRs participate in atherosclerosis protection via ATLOs.


Assuntos
Envelhecimento/imunologia , Aterosclerose/imunologia , Receptor beta de Linfotoxina/metabolismo , Miócitos de Músculo Liso/fisiologia , Subpopulações de Linfócitos T/imunologia , Linfócitos T Reguladores/imunologia , Túnica Adventícia/imunologia , Envelhecimento/genética , Animais , Aorta/patologia , Apolipoproteínas E/genética , Aterosclerose/genética , Diferenciação Celular/genética , Movimento Celular/genética , Células Cultivadas , Coristoma/imunologia , Memória Imunológica , Ativação Linfocitária/genética , Tecido Linfoide/imunologia , Receptor beta de Linfotoxina/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Proteínas dos Microfilamentos/genética , Proteínas Musculares/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA