Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(1): e0289215, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38241343

RESUMO

Insect-microbial symbiosis contributes positively to the physiology of the insect and diet is considered as one important factor determining microbial symbiosis. In this study, we have characterized the microbiota of cigarette beetle, Lasioderma serricorne (Fabricius) on different diets and phases. The beetles were reared on different diet sources (exposed phase) for six generations and were reverted to their natal source (reverted phase) and further maintained for six more generations. The bacterial diversity and richness were higher in the exposed phase and once reverted to the natal source, the microbial abundance has re-assembled according to the natal diet source. There was re-assemblage of microbial composition in accordance to the diet and the bacterial cells are able to establish and proliferate on reverting to their natal source. The bacterial composition of the beetle was mainly dynamic and not transient where the bacterial cells were maintained at low abundance and were re-established according to the diet source. Overall, we found that the microbiota of cigarette beetle to be dynamic and bacterial composition to re-assemble in a diet-specific manner. The study provides insights on diet associated microbial plasticity of cigarette beetle and a further comprehensive understanding on mechanisms involved in microbial plasticity will help develop novel pest management strategies for this invasive insect pest.


Assuntos
Besouros , Microbiota , Produtos do Tabaco , Animais , Besouros/fisiologia , Bactérias , Dieta
2.
Mol Biol Rep ; 50(2): 1799-1807, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36471210

RESUMO

Phytocystatins are a type of proteinase inhibitor which are extensively studied for their specific inhibitory action against cysteine protease enzymes (CP) of insects and pathogens. Oryzacystatins (OC), a phytocystatin from rice inhibits CP in a reversible manner with its conserved tripartite wedge. OCs have important role in plant innate defense mechanism through phytohormonal signalling pathways. OC are induced in response to both biotic and abiotic stress conditions and are used to develop transgenic plants exhibiting resistance against stress conditions. In this review, we focus on the structure and mechanism of action of oryzacystatins, their possible role in plant physiology, biotic and abiotic stress tolerance mechanism in plants and their potential application strategies for future crop management studies.


Assuntos
Cistatinas , Cisteína Proteases , Cistatinas/química , Cistatinas/genética , Cistatinas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Estresse Fisiológico
3.
Heliyon ; 8(9): e10596, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36177231

RESUMO

Cardenolides, a group of cardiac glycosides are potent inhibitors of Na+/K+ ATPase pump in mammals, animals including insects. Some insects can circumvent the toxicity of cardenolides by mechanisms like target site resistance and metabolic resistance resulting in enhanced tolerance or adaptation. In this paper, we report an intriguing observation of a polyphagous feeder feeding gregariously on the leaves of Calotropis gigantea (L.) without any apparent adverse effect. No choice feeding assay showed higher larval biomass and reduced number of days to develop on C. gigantea leaves compared to Ricinus and banana. We found the activity of GST higher in C. gigantea fed larva and HR LC-MS analysis of Olepa sps. revealed the presence of glutathione-strophanthidin conjugate in larval body tissue. In silico molecular simulation results confirmed strong interaction between delta variant GST and glutathione-strophanthidin complex. The sequestration site and cost benefit of glutathione-strophanthidin sequestration in body tissues of Olepa sps. needs further investigation.

4.
Phytochemistry ; 186: 112728, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33721793

RESUMO

Phytoprotease inhibitors (PI) are important defence compounds produced by plants against microbes and insect herbivory. Oryzacystatins (OCs) are a group of protease inhibitors from Oryza sativa L. that are specific against cysteine protease enzymes. This study revealed the evolutionary relationship of eleven different oryzacystatins from rice and their interaction with cysteine protease enzymes from brown planthopper (BPH) and striped stem borer (SSB). Three-dimensional structure of eleven different oryzacystatins and six cysteine protease enzymes were homologically modelled, and their interaction was analysed to explore the sequence heterogeneity, structural variability and functional significance. OC XI and OC V showed higher docking score and hydrogen bond interaction with all the six tested cysteine protease enzymes. N terminal glycine residue, central conserved QVVXG, C terminal AVVXXXPW regions are involved in interacting with the active site residue of protease enzymes. Substitution of N terminal glycine by any other residue in OC VI significantly reduced the interaction efficiency with cysteine proteases. In OC XI, glutamine in the fourth position of QVVXG showed higher interaction efficiency with all cysteine proteases than serine at the fourth amino acid position. N terminal glycine plays a vital role in OC XI for interacting with active sites of cysteine protease enzymes whereas, in the OC V central conserved region QVVSG and C terminal PW region plays a major part in the interaction. However, either N terminal or C terminal region along with the central conserved region of oryzacystatin is involved in mediating an efficient interaction with the active site residues of cysteine proteases. Molecular dynamic (MD) simulation study revealed the stability of the OC X1 - cathepsin O2 like and OC V - cathepsin F like complexes during a simulation for 20 ns. Insilico results of the present study predict the potential of oryzacystatins interaction with cysteine protease enzymes of insects.


Assuntos
Cistatinas , Cisteína Proteases , Sequência de Aminoácidos , Animais , Simulação por Computador , Cisteína , Inibidores de Cisteína Proteinase/farmacologia , Insetos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA