Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3827, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714735

RESUMO

The main protease (Mpro) of SARS-CoV-2 is critical for viral function and a key drug target. Mpro is only active when reduced; turnover ceases upon oxidation but is restored by re-reduction. This suggests the system has evolved to survive periods in an oxidative environment, but the mechanism of this protection has not been confirmed. Here, we report a crystal structure of oxidized Mpro showing a disulfide bond between the active site cysteine, C145, and a distal cysteine, C117. Previous work proposed this disulfide provides the mechanism of protection from irreversible oxidation. Mpro forms an obligate homodimer, and the C117-C145 structure shows disruption of interactions bridging the dimer interface, implying a correlation between oxidation and dimerization. We confirm dimer stability is weakened in solution upon oxidation. Finally, we observe the protein's crystallization behavior is linked to its redox state. Oxidized Mpro spontaneously forms a distinct, more loosely packed lattice. Seeding with crystals of this lattice yields a structure with an oxidation pattern incorporating one cysteine-lysine-cysteine (SONOS) and two lysine-cysteine (NOS) bridges. These structures further our understanding of the oxidative regulation of Mpro and the crystallization conditions necessary to study this structurally.


Assuntos
Domínio Catalítico , Proteases 3C de Coronavírus , Cisteína , Dissulfetos , Oxirredução , SARS-CoV-2 , Dissulfetos/química , Dissulfetos/metabolismo , SARS-CoV-2/metabolismo , SARS-CoV-2/química , Proteases 3C de Coronavírus/metabolismo , Proteases 3C de Coronavírus/química , Cisteína/química , Cisteína/metabolismo , Cristalografia por Raios X , Humanos , Modelos Moleculares , Multimerização Proteica , COVID-19/virologia
2.
Commun Biol ; 5(1): 805, 2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-35953531

RESUMO

SARS-CoV-2 papain-like protease (PLpro) covers multiple functions. Beside the cysteine-protease activity, facilitating cleavage of the viral polypeptide chain, PLpro has the additional and vital function of removing ubiquitin and ISG15 (Interferon-stimulated gene 15) from host-cell proteins to support coronaviruses in evading the host's innate immune responses. We identified three phenolic compounds bound to PLpro, preventing essential molecular interactions to ISG15 by screening a natural compound library. The compounds identified by X-ray screening and complexed to PLpro demonstrate clear inhibition of PLpro in a deISGylation activity assay. Two compounds exhibit distinct antiviral activity in Vero cell line assays and one inhibited a cytopathic effect in non-cytotoxic concentration ranges. In the context of increasing PLpro mutations in the evolving new variants of SARS-CoV-2, the natural compounds we identified may also reinstate the antiviral immune response processes of the host that are down-regulated in COVID-19 infections.


Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , Sítio Alostérico , Antivirais/farmacologia , Proteases Semelhantes à Papaína de Coronavírus , Humanos , Papaína/metabolismo , Peptídeo Hidrolases/metabolismo , SARS-CoV-2
3.
Chem Sci ; 8(6): 4612-4618, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28970883

RESUMO

We describe a cell-permeable photoswitchable probe capable of modulating epigenetic cellular states by disruption of an essential protein-protein interaction within the MLL1 methyltransferase core complex. Our azobenzene-containing peptides selectively block the WDR5-MLL1 interaction by binding to WDR5 with high affinity (Ki = 1.25 nM). We determined the co-crystal structure of this photoswitchable peptiomimetic with WDR5 to understand the interaction at the atomic level. Importantly, the photoswitchable trans and cis conformers of the probe display a clear difference in their inhibition of MLL1. We further demonstrate that the designed photo-controllable azo-peptidomimetics affect the transcription of the MLL1-target gene Deptor, which regulates hematopoiesis and leukemogenesis, and inhibit the growth of leukemia cells. This strategy demonstrates the potential of photopharmacological inhibition of methyltransferase protein-protein interactions as a novel method for external epigenetic control, providing a new toolbox for controlling epigenetic states.

4.
Proc Natl Acad Sci U S A ; 112(43): 13348-53, 2015 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-26460002

RESUMO

Nucleotide-based second messengers serve in the response of living organisms to environmental changes. In bacteria and plant chloroplasts, guanosine tetraphosphate (ppGpp) and guanosine pentaphosphate (pppGpp) [collectively named "(p)ppGpp"] act as alarmones that globally reprogram cellular physiology during various stress conditions. Enzymes of the RelA/SpoT homology (RSH) family synthesize (p)ppGpp by transferring pyrophosphate from ATP to GDP or GTP. Little is known about the catalytic mechanism and regulation of alarmone synthesis. It also is unclear whether ppGpp and pppGpp execute different functions. Here, we unravel the mechanism and allosteric regulation of the highly cooperative alarmone synthetase small alarmone synthetase 1 (SAS1) from Bacillus subtilis. We determine that the catalytic pathway of (p)ppGpp synthesis involves a sequentially ordered substrate binding, activation of ATP in a strained conformation, and transfer of pyrophosphate through a nucleophilic substitution (SN2) reaction. We show that pppGpp-but not ppGpp-positively regulates SAS1 at an allosteric site. Although the physiological significance remains to be elucidated, we establish the structural and mechanistic basis for a biological activity in which ppGpp and pppGpp execute different functional roles.


Assuntos
Regulação Alostérica/fisiologia , Bacillus subtilis/genética , Proteínas de Bactérias/metabolismo , Guanosina Pentafosfato/biossíntese , Guanosina Tetrafosfato/biossíntese , Ligases/fisiologia , Proteínas de Bactérias/química , Catálise , Cromatografia Líquida de Alta Pressão , Cromatografia por Troca Iônica , Clonagem Molecular , Cristalização , Escherichia coli , Ligases/metabolismo , Espectrometria de Massas , Mutagênese
5.
Microbiologyopen ; 4(5): 790-802, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26235649

RESUMO

IscR proteins are known as transcriptional regulators for Fe-S biogenesis. In the facultatively phototrophic bacterium, Rhodobacter sphaeroides IscR is the product of the first gene in the isc-suf operon. A major role of IscR in R. sphaeroides iron-dependent regulation was suggested in a bioinformatic study (Rodionov et al., PLoS Comput Biol 2:e163, 2006), which predicted a binding site in the upstream regions of several iron uptake genes, named Iron-Rhodo-box. Most known IscR proteins have Fe-S clusters featuring (Cys)3 (His)1 ligation. However, IscR proteins from Rhodobacteraceae harbor only a single-Cys residue and it was considered unlikely that they can ligate an Fe-S cluster. In this study, the role of R. sphaeroides IscR as transcriptional regulator and sensor of the Fe-S cluster status of the cell was analyzed. A mutant lacking IscR is more impaired in growth under iron limitation than the wild-type and exhibits significantly increased ROS levels in iron-replete and iron-deplete conditions. Expression studies reveal that R. sphaeroides IscR in its cluster-bound form functions as transcriptional repressor of genes involved in iron metabolism by direct binding to the promoter region of genes preceded by the motif. A total of 110 genes are directly or indirectly affected by IscR. Furthermore, IscR possesses a unique Fe-S cluster ligation scheme with only a single cysteine involved.


Assuntos
Regulação Bacteriana da Expressão Gênica , Proteínas Ferro-Enxofre/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Rhodobacter sphaeroides/genética , Rhodobacter sphaeroides/metabolismo , Meios de Cultura/química , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Deleção de Genes , Perfilação da Expressão Gênica , Ferro/metabolismo , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Ligação Proteica , Espécies Reativas de Oxigênio/análise , Regulon , Rhodobacter sphaeroides/crescimento & desenvolvimento , Análise de Sequência de DNA
6.
Eur J Cell Biol ; 94(7-9): 280-91, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26099175

RESUMO

Mitochondria have been derived from alpha-bacterial endosymbionts during the evolution of eukaryotes. Numerous bacterial functions have been maintained inside the organelles including fatty acid degradation, citric acid cycle, oxidative phosphorylation, and the synthesis of heme or lipoic acid cofactors. Additionally, mitochondria have inherited the bacterial iron-sulfur cluster assembly (ISC) machinery. Many of the ISC components are essential for cell viability because they generate a still unknown, sulfur-containing compound for the assembly of cytosolic and nuclear Fe/S proteins that perform important functions in, e.g., protein translation, DNA synthesis and repair, and chromosome segregation. The sulfur-containing compound is exported by the mitochondrial ABC transporter Atm1 (human ABCB7) and utilized by components of the cytosolic iron-sulfur protein assembly (CIA) machinery. An appealing minimal model for the striking compartmentation of eukaryotic Fe/S protein biogenesis is provided by organisms that contain mitosomes instead of mitochondria. Mitosomes have been derived from mitochondria by reductive evolution, during which they have lost virtually all classical mitochondrial tasks. Nevertheless, mitosomes harbor all core ISC components which presumably have been maintained for assisting the maturation of cytosolic-nuclear Fe/S proteins. The current review is centered around the Atm1 export process. We present an overview on the mitochondrial requirements for the export reaction, summarize recent insights into the 3D structure and potential mechanism of Atm1, and explain how the CIA machinery uses the mitochondrial export product for the assembly of cytosolic and nuclear Fe/S proteins.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Citosol/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Núcleo Celular/metabolismo , Humanos , Proteínas de Membrana Transportadoras/metabolismo , Transporte Proteico/fisiologia
7.
Curr Opin Microbiol ; 22: 111-9, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25460804

RESUMO

Mitochondria are indispensable in eukaryotes because of their function in the maturation of cytosolic and nuclear iron­sulfur proteins that are essential for DNA synthesis and repair, tRNA modification, and protein translation. The mitochondrial Fe/S cluster assembly machinery not only generates the organelle's iron­sulfur proteins, but also extra-mitochondrial ones. Biogenesis of the latter proteins requires the mitochondrial ABC transporter Atm1 that exports a sulfur-containing compound in a glutathione-dependent fashion. The process is further assisted by the cytosolic iron­sulfur protein assembly machinery. Here, we discuss the knowns and unknowns of the mitochondrial export process that is also crucial for signaling the cellular iron status to the regulatory systems involved in the maintenance of cellular iron homeostasis.


Assuntos
Proteínas Ferro-Enxofre/metabolismo , Ferro/metabolismo , Mitocôndrias/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Transporte Biológico , Núcleo Celular/metabolismo , Citosol/metabolismo , Glutationa/metabolismo , Homeostase , Oxirredutases/metabolismo , Ligação Proteica
8.
Science ; 343(6175): 1137-40, 2014 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-24604199

RESUMO

The yeast mitochondrial ABC transporter Atm1, in concert with glutathione, functions in the export of a substrate required for cytosolic-nuclear iron-sulfur protein biogenesis and cellular iron regulation. Defects in the human ortholog ABCB7 cause the sideroblastic anemia XLSA/A. Here, we report the crystal structures of free and glutathione-bound Atm1 in inward-facing, open conformations at 3.06- and 3.38-angstrom resolution, respectively. The glutathione binding site includes a residue mutated in XLSA/A and is located close to the inner membrane surface in a large cavity. The two nucleotide-free adenosine 5'-triphosphate binding domains do not interact yet are kept in close vicinity through tight interaction of the two C-terminal α-helices of the Atm1 dimer. The resulting protein stabilization may be a common structural feature of all ABC exporters.


Assuntos
Transportadores de Cassetes de Ligação de ATP/química , Glutationa/química , Mitocôndrias/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Trifosfato de Adenosina/química , Sítios de Ligação , Cristalografia por Raios X , Multimerização Proteica , Estabilidade Proteica , Estrutura Secundária de Proteína
9.
Cell Mol Life Sci ; 67(9): 1519-35, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20140750

RESUMO

RNA interference has tremendously advanced our understanding of gene function but recent reports have exposed undesirable side-effects. Recombinant Camelid single-domain antibodies (VHHs) provide an attractive means for studying protein function without affecting gene expression. We raised VHHs against gelsolin (GsnVHHs), a multifunctional actin-binding protein that controls cellular actin organization and migration. GsnVHH-induced delocalization of gelsolin to mitochondria or the nucleus in mammalian cells reveals distinct subpopulations including free gelsolin and actin-bound gelsolin complexes. GsnVHH 13 specifically recognizes Ca(2+)-activated gelsolin (K (d) approximately 10 nM) while GsnVHH 11 binds gelsolin irrespective of Ca(2+) (K (d) approximately 5 nM) but completely blocks its interaction with G-actin. Both GsnVHHs trace gelsolin in membrane ruffles of EGF-stimulated MCF-7 cells and delay cell migration without affecting F-actin severing/capping or actin nucleation activities by gelsolin. We conclude that VHHs represent a potent way of blocking structural proteins and that actin nucleation by gelsolin is more complex than previously anticipated.


Assuntos
Actinas/metabolismo , Camelídeos Americanos/imunologia , Gelsolina/química , Gelsolina/metabolismo , Estrutura Terciária de Proteína , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/metabolismo , Actinas/genética , Animais , Cálcio/metabolismo , Linhagem Celular , Movimento Celular/fisiologia , Cristalografia por Raios X , Epitopos/química , Epitopos/metabolismo , Gelsolina/genética , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Anticorpos de Cadeia Única/genética
10.
Structure ; 15(10): 1246-57, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17937914

RESUMO

The WD40-repeat protein Cia1 is an essential, conserved member of the cytosolic iron-sulfur (Fe/S) protein assembly (CIA) machinery in eukaryotes. Here, we report the crystal structure of Saccharomyces cerevisiae Cia1 to 1.7 A resolution. The structure folds into a beta propeller with seven blades pseudo symmetrically arranged around a central axis. Structure-based sequence alignment of Cia1 proteins shows that the WD40 propeller core elements are highly conserved. Site-directed mutagenesis of amino acid residues in loop regions with high solvent accessibility identified that the conserved top surface residue R127 performs a critical function: the R127 mutant cells grew slowly and were impaired in cytosolic Fe/S protein assembly. Human Ciao1, which reportedly interacts with the Wilms' tumor suppressor, WT1, is structurally similar to yeast Cia1. We show that Ciao1 can functionally replace Cia1 and support cytosolic Fe/S protein biogenesis. Hence, our structural and biochemical studies indicate the conservation of Cia1 function in eukaryotes.


Assuntos
Proteínas de Ciclo Celular/química , Proteínas Ferro-Enxofre/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Clonagem Molecular , Cristalografia por Raios X , Humanos , Proteínas Ferro-Enxofre/química , Metalochaperonas , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Relação Estrutura-Atividade
11.
Acta Crystallogr D Biol Crystallogr ; 58(Pt 5): 867-9, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-11976506

RESUMO

The NAD(+)-dependent glycerol dehydrogenase (EC 1.1.1.6) from the extremely thermophilic bacterium Thermotoga maritima has been crystallized in the presence of glycerol by the hanging-drop vapour-diffusion method using 2-methyl-2,4-pentanediol (MPD) as the precipitating agent. Crystals of the enzyme complexed with NAD(+) have also been obtained. The crystals belong to the tetragonal system with space group I422 and unit-cell parameters a = 105.3, c = 134.5 A. They diffract to a maximum resolution of 1.4 A using synchrotron radiation (lambda = 0.838 A). Crystals of the enzyme-NAD(+) complex diffract to 2.5 A resolution using in-house Cu Kalpha radiation.


Assuntos
Desidrogenase do Álcool de Açúcar/química , Thermotoga maritima/enzimologia , Cristalografia por Raios X , Conformação Proteica , Desidrogenase do Álcool de Açúcar/isolamento & purificação , Desidrogenase do Álcool de Açúcar/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA