Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Bioinformation ; 18(8): 724-729, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37323560

RESUMO

Oral cancer is becoming more common, and it threatens to be a serious worldwide medical issue. Hence, it is of interest to elucidate the networks between proteins and biologically active compounds, as well as their functional annotations, and cell signaling pathways. The online STRING software was used to create a molecular genetics interaction network named AZURIN on oral bacterial proteins. We also used the cystoscope software to identify 11 nodes and 16 edges with an average node order of 2.91. Thus, we document data on the interaction of protein networks with other proteins for identifying potential therapeutic drug candidates linked to oral disease.

2.
Bioinformation ; 18(9): 757-763, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37426511

RESUMO

Data on the microbial composition among tobacco chewers and oral cancer patients in Rajasthan, India is of interest. NGS analysis from tobacco chewers and oral cancer comprised the most abundant and core microbial taxa in the oral cavity. It shows that highly pathogenic phylum consisting of 6% Fusobacteria and 9% Firmicutes are observed in oral cancer samples; whereas, 0.6% Treponema, 34% Firmicutes, 0.02% Mollicutes, and 4% Fusobacteria are seen in tobacco chewers. Thus, data shows that the most abundant and core microbial taxa are found in the oral cavity of tobacco chewers and oral cancer patients in Rajasthan, India.

3.
Comput Methods Programs Biomed ; 197: 105661, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32738679

RESUMO

BACKGROUND AND OBJECTIVE: The accumulation of plaque in the coronary artery of the human heart restricts the path of blood flow in that region and leads to Coronary Artery Disease. This study's goal is to present the pulsatile blood flow conduct through four different levels of constrictions, i.e., healthy, 25%, 50%, and 75% in human left coronary arteries. METHODS: Using CT scan data of a healthy person, the two-dimensional coronary model is constructed. A non-Newtonian Carreau model is used to study the maximum flow velocity, streamline effect, and maximum Wall Shear Stress at the respective constricted areas over the entire cardiac cycle. Finite Volume Method is executed for solving the governing equations. The fluctuating Wall Shear Stress (WSS) at different levels was assessed using Computational Fluid Dynamics (CFD). RESULTS: The comparative study of the diseased arteries showcases that at the systolic phase, the 75% blocked artery attains the maximum velocity of 0.14 m/s and 0.53 m/s at t=0.005 s and t=0.115 s, respectively. While the maximum velocity takes a significant drop at t=0.23 s and t=0.345 s, this marks the diastolic phase. The streamline contour showcased the blood flow conduct at different phases of the cardiac cycle. At the peak systolic phase, a dense flow separation was observed near the blocked regions. It highlights the disturbed flow in that particular region. The most severely diseased artery acquires the maximum WSS of 18.81 Pa at the peak systolic phase, i.e., at t=0.115 s. CONCLUSIONS: The computational study of the hemodynamic parameters can aid in the early anticipation of the degree of the severity of the diseased arteries. This study, in a way, could benefit doctors/surgeons to plan an early treatment/surgery on the grounds of the severity of the disease. Thus, a before time prognosis could restrain the number of deaths caused due to Coronary Artery Disease.


Assuntos
Simulação por Computador , Vasos Coronários , Modelos Cardiovasculares , Velocidade do Fluxo Sanguíneo , Vasos Coronários/diagnóstico por imagem , Hemodinâmica , Humanos , Fluxo Pulsátil , Resistência ao Cisalhamento , Estresse Mecânico
4.
Comput Methods Programs Biomed ; 187: 105243, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31805457

RESUMO

Computational fluid dynamics (CFD) study of blood flow in human coronary artery is one of the emerging fields of Biomed- ical engineering. In present review paper, Finite Volume Method with governing equations and boundary conditions are briefly discussed for different coronary models. Many researchers have come up with astonishing results related to the various factors (blood viscosity, rate of blood flow, shear stress on the arterial wall, Reynolds number, etc.) affecting the hemodynamic of blood in the right/left coronary artery. The aim of this paper is to present an overview of all those work done by the researchers to justify their work related to factors which hampers proper functioning of heart and lead to Coronary Artery Disease (CAD). Governing equations like Navier-stokes equations, continuity equations etc. are widely used and are solved using CFD solver to get a clearer view of coronary artery blockage. Different boundary conditions and blood properties published in the last ten years are summarized in the tabulated form. This table will help new researchers to work on this area.


Assuntos
Vasos Coronários/anatomia & histologia , Vasos Coronários/fisiologia , Aneurisma/diagnóstico por imagem , Aneurisma/fisiopatologia , Engenharia Biomédica , Ponte de Artéria Coronária , Doença da Artéria Coronariana/diagnóstico por imagem , Doença da Artéria Coronariana/fisiopatologia , Vasos Coronários/diagnóstico por imagem , Hemodinâmica , Humanos , Hidrodinâmica , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Modelos Cardiovasculares , Tomografia de Coerência Óptica , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA