Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 11(17): e2302872, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38445882

RESUMO

Glioblastoma (GBM) is hard to treat due to cellular invasion into functioning brain tissues, limited drug delivery, and evolved treatment resistance. Recurrence is nearly universal even after surgery, chemotherapy, and radiation. Photodynamic therapy (PDT) involves photosensitizer administration followed by light activation to generate reactive oxygen species at tumor sites, thereby killing cells or inducing biological changes. PDT can ablate unresectable GBM and sensitize tumors to chemotherapy. Verteporfin (VP) is a promising photosensitizer that relies on liposomal carriers for clinical use. While lipids increase VP's solubility, they also reduce intracellular photosensitizer accumulation. Here, a pure-drug nanoformulation of VP, termed "NanoVP", eliminating the need for lipids, excipients, or stabilizers is reported. NanoVP has a tunable size (65-150 nm) and 1500-fold higher photosensitizer loading capacity than liposomal VP. NanoVP shows a 2-fold increase in photosensitizer uptake and superior PDT efficacy in GBM cells compared to liposomal VP. In mouse models, NanoVP-PDT improved tumor control and extended animal survival, outperforming liposomal VP and 5-aminolevulinic acid (5-ALA). Moreover, low-dose NanoVP-PDT can safely open the blood-brain barrier, increasing drug accumulation in rat brains by 5.5-fold compared to 5-ALA. NanoVP is a new photosensitizer formulation that has the potential to facilitate PDT for the treatment of GBM.


Assuntos
Neoplasias Encefálicas , Sistemas de Liberação de Medicamentos , Fotoquimioterapia , Fármacos Fotossensibilizantes , Verteporfina , Animais , Fotoquimioterapia/métodos , Verteporfina/farmacologia , Verteporfina/uso terapêutico , Camundongos , Fármacos Fotossensibilizantes/administração & dosagem , Fármacos Fotossensibilizantes/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Glioblastoma/tratamento farmacológico , Nanopartículas/química , Modelos Animais de Doenças , Humanos , Ratos , Lipossomos , Linhagem Celular Tumoral , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos
2.
Sci Adv ; 9(36): eadi3441, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37672582

RESUMO

Fluorescence-guided intervention can bolster standard therapies by detecting and treating microscopic tumors before lethal recurrence. Tremendous progress in photoimmunotherapy and nanotechnology has been made to treat metastasis. However, many are lost in translation due to heterogeneous treatment effects. Here, we integrate three technological advances in targeted photo-activable multi-agent liposome (TPMAL), fluorescence-guided intervention, and laser endoscopy (ML7710) to improve photoimmunotherapy. TPMAL consists of a nanoliposome chemotherapy labeled with fluorophores for tracking and photosensitizer immunoconjugates for photoimmunotherapy. ML7710 is connected to Modulight Cloud to capture and analyze multispectral emission from TPMAL for fluorescence-guided drug delivery (FGDD) and fluorescence-guided light dosimetry (FGLD) in peritoneal carcinomatosis mouse models. FGDD revealed that TPMAL enhances drug delivery to metastases by 14-fold. ML7710 captured interpatient variability in TPMAL uptake and prompted FGLD in >50% of animals. By combining TPMAL, ML7710, and fluorescence-guided intervention, variation in treatment response was substantially reduced and tumor control improved without side effects.


Assuntos
Neoplasias Peritoneais , Animais , Camundongos , Neoplasias Peritoneais/terapia , Imunoterapia , Fototerapia , Nanotecnologia , Sistemas de Liberação de Medicamentos , Lipossomos
3.
J Biol Chem ; 297(3): 101045, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34363833

RESUMO

Glycosyltransferases constitute a large family of enzymes across all domains of life, but knowledge of their biochemical function remains largely incomplete, particularly in the context of plant specialized metabolism. The labdane diterpenes represent a large class of phytochemicals with many pharmacological benefits, such as anti-inflammatory, hepatoprotective, and anticarcinogenic. The medicinal plant kalmegh (Andrographis paniculata) produces bioactive labdane diterpenes; notably, the C19-hydroxyl diterpene (andrograpanin) is predominantly found as C19-O-glucoside (neoandrographolide), whereas diterpenes having additional hydroxylation(s) at C3 (14-deoxy-11,12-didehydroandrographolide) or C3 and C14 (andrographolide) are primarily detected as aglycones, signifying scaffold-selective C19-O-glucosylation of diterpenes in planta. Here, we analyzed UDP-glycosyltransferase (UGT) activity and diterpene levels across various developmental stages and tissues and found an apparent correlation of UGT activity with the spatiotemporal accumulation of neoandrographolide, the major diterpene C19-O-glucoside. The biochemical analysis of recombinant UGTs preferentially expressed in neoandrographolide-accumulating tissues identified a previously uncharacterized UGT86 member (ApUGT12/UGT86C11) that catalyzes C19-O-glucosylation of diterpenes with strict scaffold selectivity. ApUGT12 localized to the cytoplasm and catalyzed diterpene C19-O-glucosylation in planta. The substrate selectivity demonstrated by the recombinant ApUGT12 expressed in plant and bacterium hosts was comparable to native UGT activity. Recombinant ApUGT12 showed significantly higher catalytic efficiency using andrograpanin compared with 14-deoxy-11,12-didehydroandrographolide and trivial activity using andrographolide. Moreover, ApUGT12 silencing in plants led to a drastic reduction in neoandrographolide content and increased levels of andrograpanin. These data suggest the involvement of ApUGT12 in scaffold-selective C19-O-glucosylation of labdane diterpenes in plants. This knowledge of UGT86 function might help in developing plant chemotypes and synthesis of pharmacologically relevant diterpenes.


Assuntos
Andrographis/enzimologia , Diterpenos/metabolismo , Glicosiltransferases/metabolismo , Proteínas de Plantas/metabolismo , Andrographis/química , Andrographis/genética , Andrographis/metabolismo , Vias Biossintéticas , Diterpenos/química , Glicosiltransferases/genética , Filogenia , Proteínas de Plantas/genética , Plantas/classificação , Plantas/enzimologia , Plantas/genética , Transporte Proteico
4.
Plant J ; 107(5): 1403-1419, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34165841

RESUMO

Triterpenes (30-carbon isoprene compounds) represent a large and highly diverse class of natural products that play various physiological functions in plants. The triterpene biosynthetic enzymes, particularly those catalyzing the late-stage regio-selective modifications are not well characterized. The bark of select Boswellia trees, e.g., B. serrata exudes specialized oleo-gum resin in response to wounding, which is enriched with boswellic acids (BAs), a unique class of C3α-epimeric pentacyclic triterpenes with medicinal properties. The bark possesses a network of resin secretory structures comprised of vertical and horizontal resin canals, and amount of BAs in bark increases considerably in response to wounding. To investigate BA biosynthetic enzymes, we conducted tissue-specific transcriptome profiling and identified a wound-responsive BAHD acetyltransferase (BsAT1) of B. serrata catalyzing the late-stage C3α-O-acetylation reactions in the BA biosynthetic pathway. BsAT1 catalyzed C3α-O-acetylation of αBA, ßBA, and 11-keto-ßBA in vitro and in planta assays to produce all the major C3α-O-acetyl-BAs (3-acetyl-αBA, 3-acetyl-ßBA, and 3-acetyl-11-keto-ßBA) found in B. serrata bark and oleo-gum resin. BsAT1 showed strict specificity for BA scaffold, whereas it did not acetylate the more common C3ß-epimeric pentacyclic triterpenes. The analysis of steady-state kinetics using various BAs revealed distinct substrate affinity and catalytic efficiency. BsAT1 transcript expression coincides with increased levels of C3α-O-acetyl-BAs in bark in response to wounding, suggesting a role of BsAT1 in wound-induced biosynthesis of C3α-O-acetyl-BAs. Overall, the results provide new insights into the biosynthesis of principal chemical constituents of Boswellia oleo-gum resin.


Assuntos
Acetiltransferases/metabolismo , Boswellia/enzimologia , Resinas Vegetais/metabolismo , Transcriptoma , Triterpenos/metabolismo , Acetiltransferases/genética , Vias Biossintéticas , Boswellia/anatomia & histologia , Boswellia/química , Boswellia/genética , Cromatografia Líquida de Alta Pressão , Cromatografia Gasosa-Espectrometria de Massas , Genes Reporter , Especificidade de Órgãos , Casca de Planta/anatomia & histologia , Casca de Planta/química , Casca de Planta/enzimologia , Casca de Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Medicinais , Resinas Vegetais/química , Nicotiana/genética , Nicotiana/metabolismo , Triterpenos/química
5.
Protoplasma ; 258(5): 1155-1162, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33704567

RESUMO

Kalmegh [Andrographis paniculata (Burm.f.) Wall. ex Nees] is one of the most studied medicinal plants for pharmaceutical properties and phytochemistry. However, functional genomics studies in kalmegh are so far limited due to the unavailability of a robust tool for gene silencing. Here, we tested the application of virus-induced gene silencing (VIGS) in kalmegh using the well-known Tobacco rattle virus (TRV)-based vectors and achieved targeted silencing of phytoene desaturase (ApPDS) which is essential in plants for carotenoid biosynthesis that protects chlorophyll from photooxidation. ApPDS silencing in kalmegh leaves developed a typical photobleaching phenotype. The silencing of ApPDS was confirmed by analysing ApPDS transcript level and determining chlorophyll content in the leaves of VIGS seedlings. The analysis revealed ~30% reduction in chlorophyll content, and 40 to 60% reduction in ApPDS transcript level in the leaves of VIGS seedlings. These findings clearly demonstrated the applicability of VIGS in kalmegh using TRV-based vectors. The VIGS protocol presented in this study might be useful for studying gene function related to medicinal and agricultural traits in kalmegh.


Assuntos
Vírus de Plantas , Plantas Medicinais , Andrographis paniculata , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Vírus de Plantas/genética , Plântula
6.
Dalton Trans ; 50(10): 3629-3640, 2021 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-33625414

RESUMO

Two water-soluble piano-stool shaped ruthenium(ii)-arene complexes, [RuII(η6-p-cymene)(L)Cl2] [RuLCl] and [RuII(η6-p-cymene)(L)(PTA)Cl] [RuLPTA], were designed as emissive photocytotoxic agents tagged with morpholine as the lysosome targeting moiety. Here, L = N-(2-morpholinoethyl)-4-(2-aminoethyl)amino-naphthalimide, and PTA = 1,3,5-triaza-7-phosphatricyclo-[3.3.1.1]decane. The crystal structure of [RuLCl] exhibits the pseudooctahedral 'three-legged piano-stool' geometry, wherein Ru(ii) is bound to the η6-p-cymene moiety as a base and two chlorides and the amine-N of the ligand L occupies the three legs of the stool. The complexes exhibited both the possibility of covalent adduct formation via the hydrolyzed Ru-Cl bond and non-covalent intercalation binding through planar naphthalimide moieties. The complexes showed enhanced photo-cytotoxicity under low-power blue LED light irradiation (λmax = 448 nm) mediated by 1O2, thereby acting as potential PDT agents. Fluorescence microscopy studies revealed that luminescent complexes preferentially localized in both the lysosomes and nucleus for effectively targeting and damaging the nuclear DNA for PDT effects. Due to enhanced lipophilicity of [RuLCl], it showed higher internalization into MCF-7 cell, measured in terms of the ruthenium content using ICP-MS. The interaction of the complexes with human transferrin (hTf) proteins was studied through molecular docking calculations, suggesting favorable binding through histidine residues and possible internalization into cancer cells via TfR-mediated endocytosis. The luminescence properties of the complexes were well-utilized to study their cellular uptake mechanism via endocytosis using fluorescence microscopy.


Assuntos
Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , Naftalimidas/farmacologia , Imagem Óptica , Fármacos Fotossensibilizantes/farmacologia , Rutênio/farmacologia , Transferrina/química , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Sítios de Ligação/efeitos dos fármacos , Bovinos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Cristalografia por Raios X , DNA/química , DNA/efeitos dos fármacos , Dano ao DNA , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Luminescência , Microscopia de Fluorescência , Modelos Moleculares , Estrutura Molecular , Naftalimidas/química , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/química , Rutênio/química
7.
Dalton Trans ; 48(31): 11822-11828, 2019 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-31215556

RESUMO

Two new curcumin containing octahedral ruthenium(ii) polypyridyl complexes, viz. [Ru(NN)2(cur)](PF6) [NN = bpy (1), phen (2)], were designed to explore the antimicrobial activity against ESKAPE pathogens, especially with the Gram-positive drug resistant S. aureus. Solid-state structural characterization by single-crystal X-ray crystallography shows the RuII-center in a distorted octahedral {RuN4O2} geometry. The tested compounds showed significant inhibitory activity and high selectivity (MIC = 1 µg mL-1, SI = 80) against a wide variety of methicillin and vancomycin-resistant S. aureus strains. Compound 1 exhibited strong anti-biofilm activity (48% reduction of biofilm) at 10× MIC compared to the other approved drugs. The murine model of Staphylococcus infection significantly reduced the mean bacterial counts when treated with complex 1 compared to vancomycin, demonstrating its antimicrobial potential in vivo.


Assuntos
Antibacterianos/farmacologia , Complexos de Coordenação/farmacologia , Curcumina/farmacologia , Desenho de Fármacos , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Rutênio/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/síntese química , Antibacterianos/química , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Curcumina/química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Rutênio/química
8.
Eur J Med Chem ; 144: 243-254, 2018 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-29274491

RESUMO

The effect on the therapeutic efficacy of Pt(II) complexes on combining non-steroidal anti-inflammatory drugs (NSAIDs) is an attractive strategy to circumvent chronic inflammation mediated by cancer and metastasis. Two square-planar platinum(II) complexes: [Pt(dach)(nap)Cl] (1) and [Pt(dach)(nap)2] (2), where dach = (1R,2R)-dichloro(cyclohexane-1,2-diamine) and NSAID drug naproxen (nap), have been designed for studying their biological activity. The naproxen bound to the Pt(II) centre get released upon photoirradiation with low-power UV-A light as confirmed by the significant enhancement in emission intensities of the complexes. The compounds were evaluated for their photophysical properties, photostability, reactivity with 5'-guanosine monophophosphate (5'-GMP), interactions with CT-DNA and BSA, antioxidant activity and reactive oxygen species mediated photo-induced DNA damage properties. ESI-MS studies demonstrated the formation of bis-adduct with 5'-GMP and the formation of PtII-DNA crosslinks by gel electrophoretic mobility shift assay and ITC studies. The interaction of the complexes 1 and 2 with the CT-DNA exhibits potential binding affinity (Kb âˆ¼ 104 M-1, Kapp∼ 105 M-1), implying intercalation to CT-DNA through planar naphthyl ring of the complexes. Both the complexes also exhibit strong binding affinity towards BSA (KBSA∼ 105 M-1). The complexes exhibit efficient DNA damage activity on irradiation at 365 nm via formation of singlet oxygen (1O2) and hydroxyl radical (•OH) under physiological conditions. Both the complexes were cytotoxic in dark and exhibit significant enhancement of cytotoxicity upon photo-exposure against HeLa and HepG2 cancer cells giving IC50 values ranging from 8 to 12 µM for 1 and 2. The cellular internalization data showed cytosolic and nuclear localization of the complexes in the HeLa cells.


Assuntos
Anti-Inflamatórios não Esteroides/química , Antineoplásicos/química , Antioxidantes/química , Naproxeno/análogos & derivados , Compostos Organoplatínicos/química , Anti-Inflamatórios não Esteroides/farmacologia , Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/efeitos da radiação , Células HeLa , Células Hep G2 , Humanos , Naproxeno/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/genética , Compostos Organoplatínicos/farmacologia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Raios Ultravioleta
9.
Chem Commun (Camb) ; 53(45): 6144-6147, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28534565

RESUMO

Two highly luminescent water-soluble heterometallic LnPt2 complexes, [{cis-PtCl(NH3)2}2Ln(L)(H2O)](NO3)2 (Ln = Eu (1), Tb (2)), have been designed for their selective nucleoli staining through formation of Pt-DNA crosslinks. The complexes showed significant cellular uptake and distinctive nucleoli localization through intrinsic emission from EuIII or TbIII observed through confocal fluorescence microscopy.


Assuntos
Nucléolo Celular/metabolismo , Complexos de Coordenação/farmacologia , Reagentes de Ligações Cruzadas/farmacologia , DNA/química , Animais , Bovinos , Linhagem Celular Tumoral , Complexos de Coordenação/química , Complexos de Coordenação/toxicidade , Reagentes de Ligações Cruzadas/química , Reagentes de Ligações Cruzadas/toxicidade , Európio/química , Humanos , Microscopia Confocal , Solubilidade , Coloração e Rotulagem/métodos , Térbio/química
10.
J Indian Assoc Pediatr Surg ; 17(3): 107-10, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22869975

RESUMO

AIMS: To analyze whether outcome of neonates having esophageal atresia with or without tracheoesophageal fistula (EA±TEF) associated with anorectal malformation (ARM) can be improved by doing surgery in 2 stages. MATERIALS AND METHODS: A prospective study of neonates having both EA±TEF and ARM from 2004 to 2011. The patients with favorable parameters were operated in a single stage, whereas others underwent first-stage decompression surgery for ARM. Thereafter, once septicemia was under control and ventilator care available, second-stage surgery for EA±TEF was performed. RESULTS: Total 70 neonates (single stage = 20, 2 stages = 30, expired after colostomy = 9, only EA±TEF repair needed = 11) were enrolled. The admission rate for this association was 1 per 290. Forty-one percent (24/70) neonates had VACTERL association and 8.6% (6/70) neonates had multiple gastrointestinal atresias. Sepsis screen was positive in 71.4% (50/70). The survival was 45% (9/20) in neonates operated in a single stage and 53.3% (16/30) when operated in 2 stages (P = 0.04). Data analysis of 50 patients revealed that the survived neonates had significantly better birth weight, better gestational age, negative sepsis screen, no cardiac diseases, no pneumonia, and 2-stage surgery (P value 0.002, 0.003, 0.02, 0.02, 0.04, and 0.04, respectively). The day of presentation and abdominal distension had no significant effect (P value 0.06 and 0.06, respectively). This was further supported by stepwise logistic regression analysis. CONCLUSIONS: In a limited resources scenario, the survival rate of babies with this association can be improved by treating ARM first and then for EA±TEF in second stage, once mechanical ventilator care became available and sepsis was under control.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA