Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 1075, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-35058480

RESUMO

Inflammatory diseases including COVID-19 are associated with a cytokine storm characterized by high interleukin-6 (IL-6) titers. In particular, while recent studies examined COVID-19 associated arrhythmic risks from cardiac injury and/or from pharmacotherapy such as the combination of azithromycin (AZM) and hydroxychloroquine (HCQ), the role of IL-6 per se in increasing the arrhythmic risk remains poorly understood. The objective is to elucidate the electrophysiological basis of inflammation-associated arrhythmic risk in the presence of AZM and HCQ. IL-6, AZM and HCQ were concomitantly administered to guinea pigs in-vivo and in-vitro. Electrocardiograms, action potentials and ion-currents were analyzed. IL-6 alone or the combination AZM + HCQ induced mild to moderate reduction in heart rate, PR-interval and corrected QT (QTc) in-vivo and in-vitro. Notably, IL-6 alone was more potent than the combination of the two drugs in reducing heart rate, increasing PR-interval and QTc. In addition, the in-vivo or in-vitro combination of IL-6 + AZM + HCQ caused severe bradycardia, conduction abnormalities, QTc prolongation and asystole. These electrocardiographic abnormalities were attenuated in-vivo by tocilizumab (TCZ), a monoclonal antibody against IL-6 receptor, and are due in part to the prolongation of action potential duration and selective inhibition of Na+, Ca2+ and K+ currents. Inflammation confers greater risk for arrhythmia than the drug combination therapy. As such, in the setting of elevated IL-6 during inflammation caution must be taken when co-administering drugs known to predispose to fatal arrhythmias and TCZ could be an important player as a novel anti-arrhythmic agent. Thus, identifying inflammation as a critical culprit is essential for proper management.


Assuntos
Arritmias Cardíacas , Azitromicina/farmacologia , Tratamento Farmacológico da COVID-19 , COVID-19 , Hidroxicloroquina/farmacologia , Interleucina-6/metabolismo , SARS-CoV-2/metabolismo , Animais , Anticorpos Monoclonais Humanizados/farmacologia , Arritmias Cardíacas/etiologia , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatologia , Arritmias Cardíacas/prevenção & controle , COVID-19/complicações , COVID-19/metabolismo , COVID-19/fisiopatologia , Feminino , Cobaias , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/fisiopatologia , Interleucina-6/antagonistas & inibidores , Masculino
2.
J Am Heart Assoc ; 10(21): e022095, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34713715

RESUMO

Background Recent data suggest that systemic inflammation can negatively affect atrioventricular conduction, regardless of acute cardiac injury. Indeed, gap-junctions containing connexin43 coupling cardiomyocytes and inflammation-related cells (macrophages) are increasingly recognized as important factors regulating the conduction in the atrioventricular node. The aim of this study was to evaluate the acute impact of systemic inflammatory activation on atrioventricular conduction, and elucidate underlying mechanisms. Methods and Results We analyzed: (1) the PR-interval in patients with inflammatory diseases of different origins during active phase and recovery, and its association with inflammatory markers; (2) the existing correlation between connexin43 expression in the cardiac tissue and peripheral blood mononuclear cells (PBMC), and the changes occurring in patients with inflammatory diseases over time; (3) the acute effects of interleukin(IL)-6 on atrioventricular conduction in an in vivo animal model, and on connexin43 expression in vitro. In patients with elevated C-reactive protein levels, atrioventricular conduction indices are increased, but promptly normalized in association with inflammatory markers reduction, particularly IL-6. In these subjects, connexin43 expression in PBMC, which is correlative of that measured in the cardiac tissue, inversely associated with IL-6 changes. Moreover, direct IL-6 administration increased atrioventricular conduction indices in vivo in a guinea pig model, and IL-6 incubation in both cardiomyocytes and macrophages in culture, significantly reduced connexin43 proteins expression. Conclusions The data evidence that systemic inflammation can acutely worsen atrioventricular conduction, and that IL-6-induced down-regulation of cardiac connexin43 is a mechanistic pathway putatively involved in the process. Though reversible, these alterations could significantly increase the risk of severe atrioventricular blocks during active inflammatory processes.


Assuntos
Bloqueio Atrioventricular , Conexina 43 , Animais , Nó Atrioventricular , Citocinas , Cobaias , Humanos , Inflamação , Interleucina-6 , Leucócitos Mononucleares
3.
J Am Heart Assoc ; 8(16): e011006, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31423933

RESUMO

Background Systemic inflammation is a strong predictor of atrial fibrillation. A key role for electrical remodeling is increasingly recognized, and experimental data suggest that inflammatory cytokines can directly affect connexins resulting in gap-junction dysfunction. We hypothesized that systemic inflammation, regardless of its origin, promotes atrial electric remodeling in vivo, as a result of cytokine-mediated changes in connexin expression. Methods and Results Fifty-four patients with different inflammatory diseases and elevated C-reactive protein were prospectively enrolled, and electrocardiographic P-wave dispersion indices, cytokine levels (interleukin-6, tumor necrosis factor-α, interleukin-1, interleukin-10), and connexin expression (connexin 40, connexin 43) were measured during active disease and after reducing C-reactive protein by >75%. Moreover, peripheral blood mononuclear cells and atrial tissue specimens from an additional sample of 12 patients undergoing cardiac surgery were evaluated for atrial and circulating mRNA levels of connexins. Finally, in vitro effects of interleukin-6 on connexin expression were studied in HL-1 mouse atrial myocytes. In patients with active inflammatory diseases, P-wave dispersion indices were increased but rapidly decreased within days when C-reactive protein normalizes and interleukin-6 levels decline. In inflammatory disease patients, both P-wave dispersion indices and interleukin-6 changes were inversely associated with circulating connexin levels, and a positive correlation between connexin expression in peripheral blood mononuclear cells and atrial tissue was demonstrated. Moreover, interleukin-6 significantly reduced connexin expression in HL-1 cells. Conclusions Our data suggest that regardless of specific etiology and organ localization, systemic inflammation, via interleukin-6 elevation, rapidly induces atrial electrical remodeling by down-regulating cardiac connexins. Although transient, these changes may significantly increase the risk for atrial fibrillation and related complications during active inflammatory processes.


Assuntos
Remodelamento Atrial/imunologia , Conexinas/genética , Inflamação/imunologia , Interleucina-6/imunologia , Miócitos Cardíacos/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Antibacterianos/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/imunologia , Remodelamento Atrial/genética , Proteína C-Reativa/imunologia , Procedimentos Cirúrgicos Cardíacos , Conexina 43/efeitos dos fármacos , Conexina 43/genética , Conexina 43/metabolismo , Conexinas/efeitos dos fármacos , Conexinas/metabolismo , Eletrocardiografia , Feminino , Regulação da Expressão Gênica , Átrios do Coração/citologia , Humanos , Infecções/tratamento farmacológico , Infecções/imunologia , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/fisiopatologia , Interleucina-1/imunologia , Interleucina-10/imunologia , Interleucina-6/farmacologia , Masculino , Camundongos , Pessoa de Meia-Idade , RNA Mensageiro/metabolismo , Fator de Necrose Tumoral alfa/imunologia , Adulto Jovem , Proteína alfa-5 de Junções Comunicantes
4.
PLoS One ; 13(12): e0208321, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30521586

RESUMO

Increased proinflammatory interleukin-6 (IL-6) levels are associated with acquired long QT-syndrome (LQTS) in patients with systemic inflammation, leading to higher risks for life-threatening polymorphic ventricular tachycardia such as Torsades de Pointes. However, the functional and molecular mechanisms of this association are not known. In most cases of acquired LQTS, the target ion channel is the human ether-á-go-go-related gene (hERG) encoding the rapid component of the delayed rectifier K current, IKr, which plays a critical role in cardiac repolarization. Here, we tested the hypothesis that IL-6 may cause QT prolongation by suppressing IKr. Electrophysiological and biochemical assays were used to assess the impact of IL-6 on the functional expression of IKr in HEK293 cells and adult guinea-pig ventricular myocytes (AGPVM). In HEK293 cells, IL-6 alone or in combination with the soluble IL-6 receptor (IL-6R), produced a significant depression of IKr peak and tail current densities. Block of IL-6R or Janus kinase (JAK) reversed the inhibitory effects of IL-6 on IKr. In AGPVM, IL-6 prolonged action potential duration (APD) which was further prolonged in the presence of IL-6R. Similar to heterologous cells, IL-6 reduced endogenous guinea pig ERG channel mRNA and protein expression. The data are first to demonstrate that IL-6 inhibition of IKr and the resulting prolongation of APD is mediated via IL-6R and JAK pathway activation and forms the basis for the observed clinical QT interval prolongation. These novel findings may guide the development of targeted anti-arrhythmic therapeutic interventions in patients with LQTS and inflammatory disorders.


Assuntos
Arritmias Cardíacas/metabolismo , Canal de Potássio ERG1/metabolismo , Inflamação/metabolismo , Interleucina-6/metabolismo , Animais , Antiarrítmicos/uso terapêutico , Arritmias Cardíacas/tratamento farmacológico , Canal de Potássio ERG1/antagonistas & inibidores , Canal de Potássio ERG1/genética , Cobaias , Células HEK293 , Humanos , Inflamação/tratamento farmacológico , Síndrome do QT Longo/tratamento farmacológico , Síndrome do QT Longo/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Receptores de Interleucina-6/metabolismo , Suínos
5.
Circ Arrhythm Electrophysiol ; 9(4): e003419, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27030700

RESUMO

BACKGROUND: In patients with autoimmune disease, anti-Ro/SSA antibodies (anti-Ro/SSA) are responsible for a novel autoimmune-associated long-QT syndrome by targeting the hERG potassium channel and inhibiting the related current (IKr). Because anti-Ro/SSA are also present in a significant proportion of healthy subjects and may be associated with torsades de pointes (TdP) arrhythmia, we tested the hypothesis that anti-Ro/SSA may represent a silent risk factor in patients developing TdP. METHODS AND RESULTS: Twenty-five consecutive patients who experienced TdP were prospectively collected independent of ongoing therapies and concomitant diseases. Anti-Ro/SSA were detected by fluoroenzyme immunoassay, immuno-Western blotting, and line-blot immunoassay. Purified IgGs from anti-Ro/SSA-positive and anti-Ro/SSA-negative patients were tested on IKr using HEK293 cells stably expressing the hERG channel. As expected, in TdP patients, many known corrected QT interval-prolonging risk factors were simultaneously present, including hypokalemia that was the most common (52%). Anti-Ro/SSA were present in 60% of the subjects, mostly the anti-Ro/SSA-52-kD subtype detected by immuno-Western blotting only. A history of autoimmune disease was found in only 2 of anti-Ro/SSA-positive patients. Experimental data demonstrated that purified anti-Ro/SSA-positive IgGs significantly inhibited IKr and cross reacted with hERG-channel proteins. Moreover, anti-Ro/SSA-positive sera exhibited high reactivity with a peptide corresponding to the hERG-channel pore-forming region. CONCLUSIONS: Anti-Ro/SSA may represent a clinically silent novel risk factor for TdP development via an autoimmune-mediated electrophysiological interference with the hERG channel. We propose that TdP patients may benefit from specific anti-Ro/SSA testing even in the absence of autoimmune diseases as immunomodulating therapies may be effective in shortening corrected QT interval and reducing TdP recurrence risk.


Assuntos
Anticorpos Antinucleares/imunologia , Autoimunidade , Eletrocardiografia , Torsades de Pointes/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Antinucleares/sangue , Western Blotting , Canal de Potássio ERG1 , Ensaio de Imunoadsorção Enzimática , Canais de Potássio Éter-A-Go-Go/metabolismo , Feminino , Seguimentos , Células HEK293/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Torsades de Pointes/sangue , Torsades de Pointes/fisiopatologia
6.
Circulation ; 132(4): 230-40, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-25995318

RESUMO

BACKGROUND: Emerging clinical evidence demonstrates high prevalence of QTc prolongation and complex ventricular arrhythmias in patients with anti-Ro antibody (anti-Ro Ab)-positive autoimmune diseases. We tested the hypothesis that anti-Ro Abs target the HERG (human ether-a-go-go-related gene) K(+) channel, which conducts the rapidly activating delayed K(+) current, IKr, thereby causing delayed repolarization seen as QT interval prolongation on the ECG. METHODS AND RESULTS: Anti-Ro Ab-positive sera, purified IgG, and affinity-purified anti-52kDa Ro Abs from patients with autoimmune diseases and QTc prolongation were tested on IKr using HEK293 cells expressing HERG channel and native cardiac myocytes. Electrophysiological and biochemical data demonstrate that anti-Ro Abs inhibit IKr to prolong action potential duration by directly binding to the HERG channel protein. The 52-kDa Ro antigen-immunized guinea pigs showed QTc prolongation on ECG after developing high titers of anti-Ro Abs, which inhibited native IKr and cross-reacted with guinea pig ERG channel. CONCLUSIONS: The data establish that anti-Ro Abs from patients with autoimmune diseases inhibit IKr by cross-reacting with the HERG channel likely at the pore region where homology between anti-52-kDa Ro antigen and HERG channel is present. The animal model of autoimmune-associated QTc prolongation is the first to provide strong evidence for a pathogenic role of anti-Ro Abs in the development of QTc prolongation. It is proposed that adult patients with anti-Ro Abs may benefit from routine ECG screening and that those with QTc prolongation should receive counseling about drugs that may increase the risk for life-threatening arrhythmias.


Assuntos
Anticorpos Anti-Idiotípicos/fisiologia , Doenças Autoimunes/etiologia , Doenças Autoimunes/fisiopatologia , Síndrome do QT Longo/etiologia , Síndrome do QT Longo/fisiopatologia , Ribonucleoproteínas/imunologia , Adulto , Idoso , Animais , Anticorpos Anti-Idiotípicos/imunologia , Anticorpos Anti-Idiotípicos/farmacologia , Arritmias Cardíacas/epidemiologia , Arritmias Cardíacas/fisiopatologia , Doenças Autoimunes/imunologia , Células Cultivadas , Modelos Animais de Doenças , Canal de Potássio ERG1 , Eletrocardiografia , Canais de Potássio Éter-A-Go-Go/efeitos dos fármacos , Canais de Potássio Éter-A-Go-Go/metabolismo , Feminino , Cobaias , Células HEK293 , Humanos , Rim/efeitos dos fármacos , Rim/metabolismo , Síndrome do QT Longo/imunologia , Masculino , Pessoa de Meia-Idade , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Fatores de Risco
7.
Lipids Health Dis ; 12: 112, 2013 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-23883163

RESUMO

BACKGROUND: Studies in animals showed that PCSK9 is involved in HDL metabolism. We investigated the molecular mechanism by which PCSK9 regulates HDL cholesterol concentration and also whether Pcsk9 inactivation might affect cholesterol efflux capacity of serum and atherosclerotic fatty streak volume. METHODS: Mass spectrometry and western blot were used to analyze the level of apolipoprotein E (APOE) and A1 (APOA1). A mouse model overexpressing human LDLR was used to test the effect of high levels of liver LDLR on the concentration of HDL cholesterol and APOE-containing HDL subfractions. Pcsk9 knockout males lacking LDLR and APOE were used to test whether LDLR and APOE are necessary for PCSK9-mediated HDL cholesterol regulation. We also investigated the effects of Pcsk9 inactivation on cholesterol efflux capacity of serum using THP-1 and J774.A1 macrophage foam cells and atherosclerotic fatty streak volume in the aortic sinus of Pcsk9 knockout males fed an atherogenic diet. RESULTS: APOE and APOA1 were reduced in the same HDL subfractions of Pcsk9 knockout and human LDLR transgenic male mice. In Pcsk9/Ldlr double-knockout mice, HDL cholesterol concentration was lower than in Ldlr knockout mice and higher than in wild-type controls. In Pcsk9/Apoe double-knockout mice, HDL cholesterol concentration was similar to that of Apoe knockout males. In Pcsk9 knockout males, THP-1 macrophage cholesterol efflux capacity of serum was reduced and the fatty streak lesion volume was similar to wild-type controls. CONCLUSIONS: In mice, LDLR and APOE are important factors for PCSK9-mediated HDL regulation. Our data suggest that, although LDLR plays a major role in PCSK9-mediated regulation of HDL cholesterol concentration, it is not the only mechanism and that, regardless of mechanism, APOE is essential. Pcsk9 inactivation decreases the HDL cholesterol concentration and cholesterol efflux capacity in serum, but does not increase atherosclerotic fatty streak volume.


Assuntos
Apolipoproteínas E/genética , Arteriosclerose/sangue , HDL-Colesterol/sangue , Pró-Proteína Convertases/genética , Receptores de LDL/metabolismo , Serina Endopeptidases/genética , Animais , Apolipoproteína A-I/metabolismo , Apolipoproteínas E/metabolismo , Arteriosclerose/metabolismo , Arteriosclerose/patologia , Linhagem Celular , HDL-Colesterol/genética , Dieta Aterogênica , Humanos , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Pró-Proteína Convertase 9 , Pró-Proteína Convertases/metabolismo , Receptores de LDL/genética , Serina Endopeptidases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA