Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
G3 (Bethesda) ; 12(8)2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35551385

RESUMO

Mentha longifolia (L.) Huds., a wild, diploid mint species, has been developed as a model for mint genetic and genomic research to aid breeding efforts that target Verticillium wilt disease resistance and essential oil monoterpene composition. Here, we present a near-complete, chromosome-scale mint genome assembly for M. longifolia USDA accession CMEN 585. This new assembly is an update of a previously published genome draft, with dramatic improvements. A total of 42,107 protein-coding genes were annotated and placed on 12 chromosomal scaffolds. One hundred fifty-three genes contained conserved sequence domains consistent with nucleotide binding site-leucine-rich-repeat plant disease resistance genes. Homologs of genes implicated in Verticillium wilt resistance in other plant species were also identified. Multiple paralogs of genes putatively involved in p-menthane monoterpenoid biosynthesis were identified and several cases of gene clustering documented. Heterologous expression of candidate genes, purification of recombinant target proteins, and subsequent enzyme assays allowed us to identify the genes underlying the pathway that leads to the most abundant monoterpenoid volatiles. The bioinformatic and functional analyses presented here are laying the groundwork for using marker-assisted selection in improving disease resistance and essential oil traits in mints.


Assuntos
Mentha , Óleos Voláteis , Verticillium , Cromossomos , Resistência à Doença/genética , Mentha/química , Mentha/genética , Mentha/metabolismo , Monoterpenos/análise , Monoterpenos/metabolismo , Óleos Voláteis/metabolismo , Melhoramento Vegetal , Verticillium/genética
2.
J Biol Chem ; 295(15): 4963-4973, 2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32086380

RESUMO

Taxol (paclitaxel) is a very widely used anticancer drug, but its commercial sources mainly consist of stripped bark or suspension cultures of members of the plant genus Taxus. Taxol accumulates as part of a complex mixture of chemical analogs, termed taxoids, which complicates its production in pure form, highlighting the need for metabolic engineering approaches for high-level Taxol production in cell cultures or microbial hosts. Here, we report on the characterization of acyl-activating enzymes (AAEs) that catalyze the formation of CoA esters of different organic acids relevant for the N-substitution of the 3-phenylisoserine side chain of taxoids. On the basis of similarities to AAE genes of known function from other organisms, we identified candidate genes in publicly available transcriptome data sets obtained with Taxus × media. We cloned 17 AAE genes, expressed them heterologously in Escherichia coli, purified the corresponding recombinant enzymes, and performed in vitro assays with 27 organic acids as potential substrates. We identified TmAAE1 and TmAAE5 as the most efficient enzymes for the activation of butyric acid (Taxol D side chain), TmAAE13 as the best candidate for generating a CoA ester of tiglic acid (Taxol B side chain), TmAAE3 and TmAAE13 as suitable for the activation of 4-methylbutyric acid (N-debenzoyl-N-(2-methylbutyryl)taxol side chain), TmAAE15 as a highly efficient candidate for hexanoic acid activation (Taxol C side chain), and TmAAE4 as suitable candidate for esterification of benzoic acid with CoA (Taxol side chain). This study lays important groundwork for metabolic engineering efforts aimed at improving Taxol production in cell cultures.


Assuntos
Acil Coenzima A/metabolismo , Coenzima A Ligases/metabolismo , Ésteres/metabolismo , Paclitaxel/química , Paclitaxel/metabolismo , Proteínas Recombinantes/metabolismo , Taxus/enzimologia , Sequência de Aminoácidos , Clonagem Molecular , Coenzima A Ligases/química , Coenzima A Ligases/genética , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Proteínas Recombinantes/genética , Homologia de Sequência
3.
Plant Physiol ; 175(2): 681-695, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28838953

RESUMO

The commercially important essential oils of peppermint (Mentha × piperita) and its relatives in the mint family (Lamiaceae) are accumulated in specialized anatomical structures called glandular trichomes (GTs). A genome-scale stoichiometric model of secretory phase metabolism in peppermint GTs was constructed based on current biochemical and physiological knowledge. Fluxes through the network were predicted based on metabolomic and transcriptomic data. Using simulated reaction deletions, this model predicted that two processes, the regeneration of ATP and ferredoxin (in its reduced form), exert substantial control over flux toward monoterpenes. Follow-up biochemical assays with isolated GTs indicated that oxidative phosphorylation and ethanolic fermentation were active and that cooperation to provide ATP depended on the concentration of the carbon source. We also report that GTs with high flux toward monoterpenes express, at very high levels, genes coding for a unique pair of ferredoxin and ferredoxin-NADP+ reductase isoforms. This study provides, to our knowledge, the first evidence of how bioenergetic processes determine flux through monoterpene biosynthesis in GTs.


Assuntos
Vias Biossintéticas , Metabolismo Energético , Mentha piperita/metabolismo , Monoterpenos/metabolismo , Óleos Voláteis/metabolismo , Tricomas/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Carbono/metabolismo , Simulação por Computador , Ferredoxinas/metabolismo , Mentha piperita/química , Modelos Moleculares , Fosforilação Oxidativa , Folhas de Planta/química , Folhas de Planta/metabolismo , Alinhamento de Sequência , Tricomas/química
6.
Nano Lett ; 6(9): 2121-9, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16968037

RESUMO

An E. coli flagellin protein, termed FliTrx, was investigated for use as a novel form of self-assembling protein nanotube. This protein was genetically engineered to display constrained peptide loops with a series of different thiol, cationic, anionic, and imidazole functional groups. "Cys-loop" thiol variants consisting of 6 and 12 cysteine residues were isolated in the form of disulfide-linked nanotube bundles, a novel nanomaterial. Bundles were characterized by fluorescence microscopy, transmission electron microscopy, and optical trapping.


Assuntos
Flagelina/química , Flagelina/ultraestrutura , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Nanotubos/química , Nanotubos/ultraestrutura , Engenharia de Proteínas/métodos , Elasticidade , Escherichia coli/genética , Escherichia coli/metabolismo , Flagelina/genética , Teste de Materiais , Micromanipulação/métodos , Complexos Multiproteicos/química , Complexos Multiproteicos/ultraestrutura , Óptica e Fotônica , Conformação Proteica , Estresse Mecânico
7.
J Mol Biol ; 316(3): 611-27, 2002 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-11866521

RESUMO

The nucleocapsid protein NCp7 of human immunodeficiency virus type 1 (HIV-1) contains two highly conserved CCHC zinc fingers and is involved in many crucial steps of the virus life-cycle. A large number of physiological rôles of NCp7 involve its binding to single-stranded nucleic acid chains. Several solution structures of NCp7 and its complex with single-stranded RNA or DNA have been reported. We have investigated the changes in the dynamic behaviour experienced by the (12-53)NCp7 peptide upon DNA binding using (15)N heteronuclear relaxation measurements at 293 K and 308 K, and fluorescence spectroscopy. The relaxation data were interpreted using the reduced spectral density approach, which allowed the high-frequency motion, overall tumbling rates and the conformational exchange contributions to be characterized for various states of the peptide without using a specific motional model. Analysis of the temperature-dependent correlation times derived from both NMR and fluorescence data indicated a co-operative change of the molecular shape of apo (12-53)NCp7 around 303 K, leading to an increased hydrodynamic radius at higher temperatures. The binding of (12-53)NCp7 to a single-stranded d(ACGCC) pentanucleotide DNA led to a reduction of the conformational flexibility that characterized the apo peptide. Translational diffusion experiments as well as rotational correlation times indicated that the (12-53)NCp7/d(ACGCC) complex tumbles as a rigid object. The amplitudes of high-frequency motions were restrained in the complex and the occurrence of conformational exchange was displaced from the second zinc finger to the linker residue Ala30.


Assuntos
Proteínas do Capsídeo , Capsídeo/química , Capsídeo/metabolismo , DNA Viral/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Produtos do Gene gag/química , Produtos do Gene gag/metabolismo , Proteínas Virais , Sequência de Aminoácidos , Sequência de Bases , DNA Viral/química , DNA Viral/genética , Difusão , Polarização de Fluorescência , Cinética , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Dados de Sequência Molecular , Movimento (Física) , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Maleabilidade , Ligação Proteica , Estrutura Terciária de Proteína , Temperatura , Termodinâmica , Dedos de Zinco , Produtos do Gene gag do Vírus da Imunodeficiência Humana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA