Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BMC Biol ; 20(1): 11, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34996447

RESUMO

BACKGROUND: Women facing increased energetic demands in childhood commonly have altered adult ovarian activity and shorter reproductive lifespan, possibly comprising a strategy to optimize reproductive success. Here, we sought to understand the mechanisms of early-life programming of reproductive function, by integrating analysis of reproductive tissues in an appropriate mouse model with methylation analysis of proxy tissue DNA in a well-characterized population of Bangladeshi migrants in the UK. Bangladeshi women whose childhood was in Bangladesh were found to have later pubertal onset and lower age-matched ovarian reserve than Bangladeshi women who grew-up in England. Subsequently, we aimed to explore the potential relevance to the altered reproductive phenotype of one of the genes that emerged from the screens. RESULTS: Of the genes associated with differential methylation in the Bangladeshi women whose childhood was in Bangladesh as compared to Bangladeshi women who grew up in the UK, 13 correlated with altered expression of the orthologous gene in the mouse model ovaries. These mice had delayed pubertal onset and a smaller ovarian reserve compared to controls. The most relevant of these genes for reproductive function appeared to be SRD5A1, which encodes the steroidogenic enzyme 5α reductase-1. SRD5A1 was more methylated at the same transcriptional enhancer in mice ovaries as in the women's buccal DNA, and its expression was lower in the hypothalamus of the mice as well, suggesting a possible role in the central control of reproduction. The expression of Kiss1 and Gnrh was also lower in these mice compared to controls, and inhibition of 5α reductase-1 reduced Kiss1 and Gnrh mRNA levels and blocked GnRH release in GnRH neuronal cell cultures. Crucially, we show that inhibition of this enzyme in female mice in vivo delayed pubertal onset. CONCLUSIONS: SRD5A1/5α reductase-1 responds epigenetically to the environment and its downregulation appears to alter the reproductive phenotype. These findings help to explain diversity in reproductive characteristics and how they are shaped by early-life environment and reveal novel pathways that might be targeted to mitigate health issues caused by life-history trade-offs.


Assuntos
3-Oxo-5-alfa-Esteroide 4-Desidrogenase/metabolismo , Colestenona 5 alfa-Redutase , Kisspeptinas , Proteínas de Membrana/metabolismo , Adaptação Fisiológica , Animais , Colestenona 5 alfa-Redutase/genética , Colestenona 5 alfa-Redutase/metabolismo , Epigênese Genética , Feminino , Hormônio Liberador de Gonadotropina/genética , Hormônio Liberador de Gonadotropina/metabolismo , Humanos , Kisspeptinas/genética , Kisspeptinas/metabolismo , Camundongos
2.
Commun Biol ; 4(1): 598, 2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-34011964

RESUMO

Culture expansion of primary cells evokes highly reproducible DNA methylation (DNAm) changes. We have identified CG dinucleotides (CpGs) that become continuously hyper- or hypomethylated during long-term culture of mesenchymal stem cells (MSCs) and other cell types. Bisulfite barcoded amplicon sequencing (BBA-seq) demonstrated that DNAm patterns of neighboring CpGs become more complex without evidence of continuous pattern development and without association to oligoclonal subpopulations. Circularized chromatin conformation capture (4C) revealed reproducible changes in nuclear organization between early and late passages, while there was no enriched interaction with other genomic regions that also harbor culture-associated DNAm changes. Chromatin immunoprecipitation of CTCF did not show significant differences during long-term culture of MSCs, however culture-associated hypermethylation was enriched at CTCF binding sites and hypomethylated CpGs were devoid of CTCF. Taken together, our results support the notion that DNAm changes during culture-expansion are not directly regulated by a targeted mechanism but rather resemble epigenetic drift.


Assuntos
Fator de Ligação a CCCTC/genética , Cromatina/metabolismo , Metilação de DNA , Epigênese Genética , Deriva Genética , Células-Tronco Mesenquimais/metabolismo , Envelhecimento , Células Cultivadas , Cromatina/genética , Ilhas de CpG , Humanos , Técnicas In Vitro , Células-Tronco Mesenquimais/citologia
3.
Nat Rev Endocrinol ; 16(9): 519-533, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32620937

RESUMO

Reproductive function adjusts in response to environmental conditions in order to optimize success. In humans, this plasticity includes age of pubertal onset, hormone levels and age at menopause. These reproductive characteristics vary across populations with distinct lifestyles and following specific childhood events, and point to a role for the early-life environment in shaping adult reproductive trajectories. Epigenetic mechanisms respond to external signals, exert long-term effects on gene expression and have been shown in animal and cellular studies to regulate normal reproductive function, strongly implicating their role in these adaptations. Moreover, human cohort data have revealed differential DNA methylation signatures in proxy tissues that are associated with reproductive phenotypic variation, although the cause-effect relationships are difficult to discern, calling for additional complementary approaches to establish functionality. In this Review, we summarize how adult reproductive function can be shaped by childhood events. We discuss why the influence of the childhood environment on adult reproductive function is an important consideration in understanding how reproduction is regulated and necessitates consideration by clinicians treating women with diverse life histories. The resolution of the molecular mechanisms responsible for human reproductive plasticity could also lead to new approaches for intervention by targeting these epigenetic modifications.


Assuntos
Adaptação Fisiológica/genética , Meio Ambiente , Epigênese Genética/fisiologia , Reprodução/genética , Envelhecimento , Animais , Metilação de DNA , Feminino , Fertilidade , Desenvolvimento Fetal , Humanos , Estilo de Vida , Masculino , Fenômenos Fisiológicos da Nutrição Materna , Fenótipo , Gravidez , Progesterona/sangue , Puberdade/genética , Reprodução/fisiologia , Testosterona/sangue , Migrantes
4.
Toxicol In Vitro ; 46: 94-101, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28986288

RESUMO

Manganese is an essential trace element however elevated environmental and occupational exposure to this element has been correlated with neurotoxicity symptoms clinically identical to idiopathic Parkinson's disease. In the present study we chronically exposed human neuroblastoma SH-SY5Y cells to manganese (100µM) and carried out expression profiling of miRNAs known to modulate neuronal differentiation and neurodegeneration. The miRNA PCR array results reveal alterations in expression levels of miRNAs, which have previously been associated with the regulation of synaptic transmission and apoptosis. The expressions of miR-7 and miR-433 significantly reduced upon manganese exposure. By in silico homology analysis we identified SNCA and FGF-20as targets of miR-7 and miR-433. We demonstrate an inverse correlation in expression levels where reduction in these two miRNAs causes increases in SNCA and FGF-20. Transient transfection of SH-SY5Y cells with miR-7 and miR-433 mimics resulted in down regulation of SNCA and FGF-20 mRNA levels. Our study is the first to uncover the potential link between manganese exposure, altered miRNA expression and parkinsonism: manganese exposure causes overexpression of SNCA and FGF-20 by diminishing miR-7 and miR-433 levels. These miRNAs may be considered critical for protection from manganese induced neurotoxic mechanism and hence as potential therapeutic targets.


Assuntos
Manganês/toxicidade , MicroRNAs/metabolismo , Doença de Parkinson/etiologia , alfa-Sinucleína/metabolismo , Linhagem Celular Tumoral , Simulação por Computador , Regulação para Baixo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , MicroRNAs/genética , Modelos Biológicos , Neurônios/efeitos dos fármacos , Análise de Sequência com Séries de Oligonucleotídeos , Doença de Parkinson/metabolismo , Reação em Cadeia da Polimerase/métodos , Regulação para Cima , alfa-Sinucleína/genética
5.
PLoS One ; 12(9): e0184221, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28877233

RESUMO

5-methylcytosine (5mC) is a key epigenetic mark which influences gene expression and phenotype. In vertebrates, this epigenetic mark is sensitive to Cd exposure, but there is no information linking such an event with changes in global 5mC levels in terrestrial gastropods despite their importance as excellentecotoxicological bioindicators of metal contamination. Therefore, we first evaluated total 5mC content in DNA of the hepatopancreas of adult Cantareus aspersus with the aim to determine whether this epigenetic mark is responsive to Cd exposure. The experiment was conducted under laboratory conditions and involved a continuous exposure, multiple dose- and time-point (14, 28, and 56 days) study design. Hepatopancreas cadmium levels were measured using Flame Atomic Absorption Spectrometry and the percentage of 5-mC in samples using an ELISA-based colorimetric assay. Snail death rates were also assessed. Our results, for the first time, reveal the presence of 5mC in C. aspersus and provide evidence for Cd-induced changes in global 5mC levels in DNA of gastropods and mollusks. Although less sensitive than tissue accumulation, DNA methylation levels responded in a dose- and time-dependent manner to dietary cadmium, with exposure dose having a much stronger effect than exposure duration. An obvious trend of increasing 5mC levels was observed starting at 28 days of exposure to the second highest dose and this trend persisted at the two highest treatments for close to one month, when the experiment was terminated after 56 days. Moreover, a strong association was identified between Cd concentrations in the hepatopancreas and DNA methylation levels in this organ. These data indicate an overall trend towards DNA hypermethylation with elevated Cd exposure. No consistent lethal effect was observed, irrespective of time point and Cd-dosage. Overall, our findings suggest that the total 5mC content in DNA of the hepatopancreas of land snails is responsive to sublethal Cd exposure and give new insights into invertebrate environmental epigenetics.


Assuntos
Cádmio/toxicidade , Metilação de DNA/efeitos dos fármacos , Hepatopâncreas/efeitos dos fármacos , Caramujos/efeitos dos fármacos , Animais , Dieta/efeitos adversos , Hepatopâncreas/metabolismo , Caramujos/metabolismo
6.
Environ Sci Pollut Res Int ; 24(17): 15187-15195, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28497329

RESUMO

5-Hydroxymethylcytosine (5hmC) is an important, yet poorly understood epigenetic DNA modification, especially in invertebrates. Aberrant genome-wide 5hmC levels have been associated with cadmium (Cd) exposure in humans, but such information is lacking for invertebrate bioindicators. Here, we aimed to determine whether this epigenetic mark is present in DNA of the hepatopancreas of the land snail Cantareus aspersus and is responsive to Cd exposure. Adult snails were reared under laboratory conditions and exposed to graded amounts of dietary cadmium for 14 days. Weight gain was used as a sublethal endpoint, whereas survival as a lethal endpoint. Our results are the first to provide evidence for the presence of 5hmC in DNA of terrestrial mollusks; 5hmC levels are generally low with the measured values falling below 0.03%. This is also the first study to investigate the interplay of Cd with DNA hydroxymethylation levels in a non-human animal study system. Cadmium retention in the hepatopancreas of C. aspersus increased from a dietary Cd dose of 1 milligram per kilogram dry weight (mg/kg d. wt). For the same treatment, we identified the only significant elevation in percentage of samples with detectable 5hmC levels despite the lack of significant mortalities and changes in weight gain among treatment groups. These findings indicate that 5hmC is an epigenetic mark that may be responsive to Cd exposure, thereby opening a new aspect to invertebrate environmental epigenetics.


Assuntos
Cádmio/toxicidade , Caramujos , Poluentes Químicos da Água/toxicidade , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Animais , Citosina , Hepatopâncreas , Humanos
7.
Arch Toxicol ; 91(7): 2629-2641, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27913844

RESUMO

Manganese (Mn) is an essential trace element required for optimal functioning of cellular biochemical pathways in the central nervous system. Elevated exposure to Mn through environmental and occupational exposure can cause neurotoxic effects resulting in manganism, a condition with clinical symptoms identical to idiopathic Parkinson's disease. Epigenetics is now recognized as a biological mechanism involved in the etiology of various diseases. Here, we investigated the role of DNA methylation alterations induced by chronic Mn (100 µM) exposure in human neuroblastoma (SH-SY5Y) cells in relevance to Parkinson's disease. A combined analysis of DNA methylation and gene expression data for Parkinson's disease-associated genes was carried out. Whole-genome bisulfite conversion and sequencing indicate epigenetic perturbation of key genes involved in biological processes associated with neuronal cell health. Integration of DNA methylation data with gene expression reveals epigenetic alterations to PINK1, PARK2 and TH genes that play critical roles in the onset of Parkinsonism. The present study suggests that Mn-induced alteration of DNA methylation of PINK1-PARK2 may influence mitochondrial function and promote Parkinsonism. Our findings provide a basis to further explore and validate the epigenetic basis of Mn-induced neurotoxicity .


Assuntos
Metilação de DNA/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Manganês/toxicidade , Doença de Parkinson/genética , Linhagem Celular Tumoral , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Neuroblastoma/genética , Proteínas Quinases/genética , Ubiquitina-Proteína Ligases/genética
8.
J Virol ; 84(18): 9505-15, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20631145

RESUMO

Expression of the E6 and E7 oncogenes of high-risk human papillomaviruses (HPV) is controlled by cellular transcription factors and by viral E2 and E8--E2C proteins, which are both derived from the HPV E2 gene. Both proteins bind to and repress the HPV E6/E7 promoter. Promoter inhibition has been suggested to be due to binding site competition with cellular transcription factors and to interactions of different cellular transcription modulators with the different amino termini of E2 and E8--E2C. We have now identified the cellular chromodomain helicase DNA binding domain 6 protein (CHD6) as a novel interactor with HPV31 E8--E2C by using yeast two-hybrid screening. Pull-down and coimmunoprecipitation assays indicate that CHD6 interacts with the HPV31 E8--E2C protein via the E2C domain. This interaction is conserved, as it occurs also with the E8--E2C proteins expressed by HPV16 and -18 and with the HPV31 E2 protein. Both RNA knockdown experiments and mutational analyses of the E2C domain suggest that binding of CHD6 to E8--E2C contributes to the transcriptional repression of the HPV E6/E7 oncogene promoter. We provide evidence that CHD6 is also involved in transcriptional repression but not activation by E2. Taken together our results indicate that the E2C domain not only mediates specific DNA binding but also has an additional role in transcriptional repression by recruitment of the CHD6 protein. This suggests that repression of the E6/E7 promoter by E2 and E8--E2C involves multiple interactions with host cell proteins through different protein domains.


Assuntos
DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação para Baixo , Interações Hospedeiro-Patógeno , Papillomavirus Humano 16/patogenicidade , Proteínas do Tecido Nervoso/metabolismo , Proteínas Oncogênicas Virais/biossíntese , Transcrição Gênica , Proteínas Virais/metabolismo , Humanos , Imunoprecipitação , Proteínas Oncogênicas Virais/metabolismo , Ligação Proteica , Mapeamento de Interação de Proteínas , Técnicas do Sistema de Duplo-Híbrido
9.
FEBS Lett ; 580(25): 5851-7, 2006 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-17027977

RESUMO

The CHD family of proteins comprises ATP-dependent chromatin remodeling enzymes, which combine chromodomains, with SWI2/SNF2 ATPase/helicase motifs and DNA-binding capability. In the last few years, CHD proteins have drawn increased attention, because some of them were found to form large multi-subunit complexes, involved in transcription-related events like gene activation, suppression, or histone modification. We previously described the identification of CHD6, a protein of the CHD subfamily III. In the present study, we report that CHD6 is expressed in cells of human origin and in various mouse tissues. Subcellular distribution of CHD6 is restricted to the nucleoplasm. We further show that CHD6 colocalizes with both hypo- and hyper-phosphorlylated forms of RNA polymerase II. CHD6 was found to be present at sites of mRNA synthesis and to be part of a high molecular weight complex. Moreover, we demonstrate DNA-dependent ATPase activity of CHD6.


Assuntos
Adenosina Trifosfatases/metabolismo , DNA/metabolismo , RNA Mensageiro/biossíntese , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Animais , Sequência de Bases , Linhagem Celular , Núcleo Celular/metabolismo , Montagem e Desmontagem da Cromatina , DNA/genética , DNA Helicases/química , DNA Helicases/genética , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células HeLa , Humanos , Camundongos , Estrutura Molecular , Peso Molecular , Complexos Multiproteicos , Fosforilação , RNA Polimerase II/química , RNA Polimerase II/metabolismo , RNA Mensageiro/genética
10.
Epigenetics ; 1(4): 155-62, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17965621

RESUMO

Leptin is a fat hormone regulating energy homeostasis. Here, it is reported that the promoter and CpG island of the autosomal gene Leptin (LEP) is a tissue-specific differentially methylated region (T-DMR) and subject to dynamic methylation in human and mouse in vivo. Highly variable densities of cytosine methylation were detected by hairpin-bisulfite PCR among cells in human adipose tissue and peripheral blood leukocytes. Intermediate and low levels of methylation characterize the majority of human LEP epialleles. Low-density epialleles are often methylated at a specific CG site within the binding element of the C/EBP-alpha transcription factor. In the human LEP promoter, the methylation frequency at that site is 1.8-fold as great as the average frequency for all other CG sites analyzed. The Lep promoter has a significantly higher methylation density in mouse somatic tissues than in the human LEP promoter. Though the LEP CpG island is generally unmethylated in both human and mouse sperm, depletion of CG sites within the mouse promoter indicates occasional presence of methylated Lep epialleles in the germline. These findings suggest that LEP promoter methylation is normally imposed during postzygotic development, and that this epigenetic mark may play a role in modulating expression of an important metabolic gene.


Assuntos
Metilação de DNA , Leptina/genética , Regiões Promotoras Genéticas , Adipócitos/fisiologia , Tecido Adiposo/fisiologia , Animais , Sequência de Bases , Mapeamento Cromossômico , Fosfatos de Dinucleosídeos/genética , Desenvolvimento Embrionário , Feminino , Humanos , Leptina/sangue , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/fisiologia , Camundongos , Conformação de Ácido Nucleico , Desnaturação de Ácido Nucleico , Reação em Cadeia da Polimerase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA