Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Bacteriol ; : e0019024, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38832794

RESUMO

Cyclic di-adenosine monophosphate (c-di-AMP) is a second messenger involved in diverse metabolic processes including osmolyte uptake, cell wall homeostasis, as well as antibiotic and heat resistance. This study investigates the role of the c-di-AMP receptor protein DarA in the osmotic stress response in Bacillus subtilis. Through a series of experiments, we demonstrate that DarA plays a central role in the cellular response to osmotic fluctuations. Our findings show that DarA becomes essential under extreme potassium limitation as well as upon salt stress, highlighting its significance in mediating osmotic stress adaptation. Suppressor screens with darA mutants reveal compensatory mechanisms involving the accumulation of osmoprotectants, particularly potassium and citrulline. Mutations affecting various metabolic pathways, including the citric acid cycle as well as glutamate and arginine biosynthesis, indicate a complex interplay between the osmotic stress response and metabolic regulation. In addition, the growth defects of the darA mutant during potassium starvation and salt stress in a strain lacking the high-affinity potassium uptake systems KimA and KtrAB can be rescued by increased affinity of the remaining potassium channel KtrCD or by increased expression of ktrD, thus resulting in increased potassium uptake. Finally, the darA mutant can respond to salt stress by the increased expression of MleN , which can export sodium ions.IMPORTANCEEnvironmental bacteria are exposed to rapidly changing osmotic conditions making an effective adaptation to these changes crucial for the survival of the cells. In Gram-positive bacteria, the second messenger cyclic di-AMP plays a key role in this adaptation by controlling (i) the influx of physiologically compatible organic osmolytes and (ii) the biosynthesis of such osmolytes. In several bacteria, cyclic di-adenosine monophosphate (c-di-AMP) can bind to a signal transduction protein, called DarA, in Bacillus subtilis. So far, no function for DarA has been discovered in any organism. We have identified osmotically challenging conditions that make DarA essential and have identified suppressor mutations that help the bacteria to adapt to those conditions. Our results indicate that DarA is a central component in the integration of osmotic stress with the synthesis of compatible amino acid osmolytes and with the homeostasis of potassium, the first response to osmotic stress.

2.
Proc Natl Acad Sci U S A ; 121(18): e2318666121, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38652747

RESUMO

In bacteria, intracellular K+ is involved in the regulation of membrane potential, cytosolic pH, and cell turgor as well as in spore germination, environmental adaptation, cell-to-cell communication in biofilms, antibiotic sensitivity, and infectivity. The second messenger cyclic-di-AMP (c-di-AMP) has a central role in modulating the intracellular K+ concentration in many bacterial species, controlling transcription and function of K+ channels and transporters. However, our understanding of how this regulatory network responds to c-di-AMP remains poor. We used the RCK (Regulator of Conductance of K+) proteins that control the activity of Ktr channels in Bacillus subtilis as a model system to analyze the regulatory function of c-di-AMP with a combination of in vivo and in vitro functional and structural characterization. We determined that the two RCK proteins (KtrA and KtrC) are neither physiologically redundant or functionally equivalent. KtrC is the physiologically dominant RCK protein in the regulation of Ktr channel activity. In explaining this hierarchical organization, we found that, unlike KtrA, KtrC is very sensitive to c-di-AMP inactivation and lack of c-di-AMP regulation results in RCK protein toxicity, most likely due to unregulated K+ flux. We also found that KtrC can assemble with KtrA, conferring c-di-AMP regulation to the functional KtrA/KtrC heteromers and potentially compensating KtrA toxicity. Altogether, we propose that the central role of c-di-AMP in the control of the K+ machinery, by modulating protein levels through gene transcription and by regulating protein activity, has determined the evolutionary selection of KtrC as the dominant RCK protein, shaping the hierarchical organization of regulatory components of the K+ machinery.


Assuntos
Bacillus subtilis , Proteínas de Bactérias , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Bacillus subtilis/metabolismo , Bacillus subtilis/genética , Potássio/metabolismo , Regulação Bacteriana da Expressão Gênica , Fosfatos de Dinucleosídeos/metabolismo , Canais de Potássio/metabolismo , Canais de Potássio/genética
3.
J Biol Chem ; 299(7): 104944, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37343703

RESUMO

The Gram-positive bacterium Bacillus subtilis can utilize several proteinogenic and non-proteinogenic amino acids as sources of carbon, nitrogen, and energy. The utilization of the amino acids arginine, citrulline, and ornithine is catalyzed by enzymes encoded in the rocABC and rocDEF operons and by the rocG gene. The expression of these genes is controlled by the alternative sigma factor SigL. RNA polymerase associated with this sigma factor depends on ATP-hydrolyzing transcription activators to initiate transcription. The RocR protein acts as a transcription activator for the roc genes. However, the details of amino acid metabolism via this pathway are unknown. Here, we investigated the contributions of all enzymes of the Roc pathway to the degradation of arginine, citrulline, and ornithine. We identified the previously uncharacterized RocB protein as responsible for the conversion of citrulline to ornithine. In vitro assays with the purified enzyme suggest that RocB acts as a manganese-dependent N-carbamoyl-L-ornithine hydrolase that cleaves citrulline to form ornithine and carbamate. Moreover, the molecular effector that triggers transcription activation by RocR has not been unequivocally identified. Using a combination of transcription reporter assays and biochemical experiments, we demonstrate that ornithine is the molecular inducer of RocR activity. Taken together, our work suggests that binding of ATP to RocR triggers its hexamerization, and binding of ornithine then allows ATP hydrolysis and activation of roc gene transcription. Thus, ornithine is the central molecule of the roc degradative pathway as it is the common intermediate of arginine and citrulline degradation and the molecular effector of RocR.


Assuntos
Arginina , Bacillus subtilis , Ornitina , Fator sigma , Trifosfato de Adenosina/metabolismo , Arginina/metabolismo , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Citrulina/metabolismo , Ornitina/metabolismo , Fator sigma/metabolismo , Fatores de Transcrição/metabolismo
4.
J Bacteriol ; 204(12): e0035322, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36377869

RESUMO

The Gram-positive model bacterium Bacillus subtilis can use several amino acids as sources of carbon and nitrogen. However, some amino acids inhibit the growth of this bacterium. This amino acid toxicity is often enhanced in strains lacking the second messenger cyclic dimeric adenosine 3',5'-monophosphate (c-di-AMP). We observed that the presence of histidine is also toxic for a B. subtilis strain that lacks all three c-di-AMP synthesizing enzymes. However, suppressor mutants emerged, and whole-genome sequencing revealed mutations in the azlB gene that encode the repressor of the azl operon. This operon encodes an exporter and an importer for branched-chain amino acids. The suppressor mutations result in an overexpression of the azl operon. Deletion of the azlCD genes encoding the branched-chain amino acid exporter restored the toxicity of histidine, indicating that this exporter is required for histidine export and for resistance to otherwise toxic levels of the amino acid. The higher abundance of the amino acid exporter AzlCD increased the extracellular concentration of histidine, thus confirming the new function of AzlCD as a histidine exporter. Unexpectedly, the AzlB-mediated repression of the operon remains active even in the presence of amino acids, suggesting that the expression of the azl operon requires the mutational inactivation of AzlB. IMPORTANCE Amino acids are building blocks for protein biosynthesis in each living cell. However, due to their reactivity and the similarity between several amino acids, they may also be involved in harmful reactions or in noncognate interactions and thus may be toxic. Bacillus subtilis can deal with otherwise toxic histidine by overexpressing the bipartite amino acid exporter AzlCD. Although encoded in an operon that also contains a gene for an amino acid importer, the corresponding genes are not expressed, irrespective of the availability of amino acids in the medium. This suggests that the azl operon is a last resort by which to deal with histidine stress that can be expressed due to the mutational inactivation of the cognate repressor AzlB.


Assuntos
Bacillus subtilis , Histidina , Histidina/metabolismo , Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Aminoácidos/metabolismo , Mutação , Óperon , Regulação Bacteriana da Expressão Gênica
5.
J Biol Chem ; 298(7): 102144, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35714772

RESUMO

The bacterial second messenger c-di-AMP controls essential cellular processes, including potassium and osmolyte homeostasis. This makes synthesizing enzymes and components involved in c-di-AMP signal transduction intriguing as potential targets for drug development. The c-di-AMP receptor protein DarB of Bacillus subtilis binds the Rel protein and triggers the Rel-dependent stringent response to stress conditions; however, the structural basis for this trigger is unclear. Here, we report crystal structures of DarB in the ligand-free state and of DarB complexed with c-di-AMP, 3'3'-cGAMP, and AMP. We show that DarB forms a homodimer with a parallel, head-to-head assembly of the monomers. We also confirm the DarB dimer binds two cyclic dinucleotide molecules or two AMP molecules; only one adenine of bound c-di-AMP is specifically recognized by DarB, while the second protrudes out of the donut-shaped protein. This enables DarB to bind also 3'3'-cGAMP, as only the adenine fits in the active site. In absence of c-di-AMP, DarB binds to Rel and stimulates (p)ppGpp synthesis, whereas the presence of c-di-AMP abolishes this interaction. Furthermore, the DarB crystal structures reveal no conformational changes upon c-di-AMP binding, leading us to conclude the regulatory function of DarB on Rel must be controlled directly by the bound c-di-AMP. We thus derived a structural model of the DarB-Rel complex via in silico docking, which was validated with mass spectrometric analysis of the chemically crosslinked DarB-Rel complex and mutagenesis studies. We suggest, based on the predicted complex structure, a mechanism of stringent response regulation by c-di-AMP.


Assuntos
Proteínas de Bactérias , Fosfatos de Dinucleosídeos , Adenina/metabolismo , Monofosfato de Adenosina/metabolismo , Bacillus subtilis/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Fosfatos de Dinucleosídeos/química , Fosfatos de Dinucleosídeos/metabolismo
6.
Nat Commun ; 12(1): 1210, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33619274

RESUMO

Many bacteria use cyclic di-AMP as a second messenger to control potassium and osmotic homeostasis. In Bacillus subtilis, several c-di-AMP binding proteins and RNA molecules have been identified. Most of these targets play a role in controlling potassium uptake and export. In addition, c-di-AMP binds to two conserved target proteins of unknown function, DarA and DarB, that exclusively consist of the c-di-AMP binding domain. Here, we investigate the function of the c-di-AMP-binding protein DarB in B. subtilis, which consists of two cystathionine-beta synthase (CBS) domains. We use an unbiased search for DarB interaction partners and identify the (p)ppGpp synthetase/hydrolase Rel as a major interaction partner of DarB. (p)ppGpp is another second messenger that is formed upon amino acid starvation and under other stress conditions to stop translation and active metabolism. The interaction between DarB and Rel only takes place if the bacteria grow at very low potassium concentrations and intracellular levels of c-di-AMP are low. We show that c-di-AMP inhibits the binding of DarB to Rel and the DarB-Rel interaction results in the Rel-dependent accumulation of pppGpp. These results link potassium and c-di-AMP signaling to the stringent response and thus to the global control of cellular physiology.


Assuntos
Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Fosfatos de Dinucleosídeos/metabolismo , Guanosina Pentafosfato/metabolismo , Sistemas do Segundo Mensageiro , Proteínas de Bactérias/química , Hidrolases/metabolismo , Modelos Biológicos , Ligação Proteica , Domínios Proteicos , Transdução de Sinais
7.
PLoS Genet ; 17(1): e1009092, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33481774

RESUMO

In order to adjust to changing environmental conditions, bacteria use nucleotide second messengers to transduce external signals and translate them into a specific cellular response. Cyclic di-adenosine monophosphate (c-di-AMP) is the only known essential nucleotide second messenger. In addition to the well-established role of this second messenger in the control of potassium homeostasis, we observed that glutamate is as toxic as potassium for a c-di-AMP-free strain of the Gram-positive model bacterium Bacillus subtilis. In this work, we isolated suppressor mutants that allow growth of a c-di-AMP-free strain under these toxic conditions. Characterization of glutamate resistant suppressors revealed that they contain pairs of mutations, in most cases affecting glutamate and potassium homeostasis. Among these mutations, several independent mutations affected a novel glutamate transporter, AimA (Amino acid importer A, formerly YbeC). This protein is the major transporter for glutamate and serine in B. subtilis. Unexpectedly, some of the isolated suppressor mutants could suppress glutamate toxicity by a combination of mutations that affect phospholipid biosynthesis and a specific gain-of-function mutation of a mechanosensitive channel of small conductance (YfkC) resulting in the acquisition of a device for glutamate export. Cultivation of the c-di-AMP-free strain on complex medium was an even greater challenge because the amounts of potassium, glutamate, and other osmolytes are substantially higher than in minimal medium. Suppressor mutants viable on complex medium could only be isolated under anaerobic conditions if one of the two c-di-AMP receptor proteins, DarA or DarB, was absent. Also on complex medium, potassium and osmolyte toxicity are the major bottlenecks for the growth of B. subtilis in the absence of c-di-AMP. Our results indicate that the essentiality of c-di-AMP in B. subtilis is caused by the global impact of the second messenger nucleotide on different aspects of cellular physiology.


Assuntos
Bacillus subtilis/metabolismo , Fosfatos de Dinucleosídeos/metabolismo , Ácido Glutâmico/metabolismo , Potássio/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/crescimento & desenvolvimento , Proteínas de Bactérias/genética , AMP Cíclico/genética , AMP Cíclico/metabolismo , Fosfatos de Dinucleosídeos/genética , Regulação Bacteriana da Expressão Gênica/genética , Ácido Glutâmico/genética , Homeostase/genética , Transporte de Íons/genética , Mutação/genética , Sistemas do Segundo Mensageiro/genética
8.
mBio ; 13(1): e0009222, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35164567

RESUMO

Osmotic stress is a significant physical challenge for free-living cells. Cells from all three domains of life maintain viability during osmotic stress by tightly regulating the major cellular osmolyte potassium (K+) and by import or synthesis of compatible solutes. It has been widely established that in response to high salt stress, many bacteria transiently accumulate high levels of K+, leading to bacteriostasis, with growth resuming only when compatible solutes accumulate and K+ levels are restored to biocompatible levels. Using Bacillus subtilis as a model system, we provide evidence that K+ fluxes perturb Mg2+ homeostasis: import of K+ upon osmotic upshift is correlated with Mg2+ efflux, and Mg2+ reimport is critical for adaptation. The transient growth inhibition resulting from hyperosmotic stress is coincident with loss of Mg2+ and a decrease in protein translation. Conversely, the reimport of Mg2+ is a limiting factor during resumption of growth. Furthermore, we show the essential signaling dinucleotide cyclic di-AMP fluctuates dynamically in coordination with Mg2+ and K+ levels, consistent with the proposal that cyclic di-AMP orchestrates the cellular response to osmotic stress. IMPORTANCE Environments with high concentrations of salt or other solutes impose an osmotic stress on cells, ultimately limiting viability by dehydration of the cytosol. A very common cellular response to high osmolarity is to immediately import high levels of potassium ion (K+), which helps prevent dehydration and allows time for the import or synthesis of biocompatible solutes that allow a resumption of growth. Here, using Bacillus subtilis as a model, we demonstrate that concomitant with K+ import there is a large reduction in intracellular magnesium (Mg2+) mediated by specific efflux pumps. Further, it is the reimport of Mg2+ that is rate-limiting for the resumption of growth. These coordinated fluxes of K+ and Mg2+ are orchestrated by cyclic-di-AMP, an essential second messenger in Firmicutes. These findings amend the conventional model for osmoadaptation and reveal that Mg2+ limitation is the proximal cause of the bacteriostasis that precedes resumption of growth.


Assuntos
Desidratação , Magnésio , Humanos , Pressão Osmótica , Homeostase , AMP Cíclico/metabolismo , Potássio/metabolismo , Proteínas de Bactérias/metabolismo
9.
mBio ; 13(1): e0360221, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35130724

RESUMO

In Bacillus subtilis and other Gram-positive bacteria, cyclic di-AMP is an essential second messenger that signals potassium availability by binding to a variety of proteins. In some bacteria, c-di-AMP also binds to the pyruvate carboxylase to inhibit its activity. We have discovered that in B. subtilis the c-di-AMP target protein DarB, rather than c-di-AMP itself, specifically binds to pyruvate carboxylase both in vivo and in vitro. This interaction stimulates the activity of the enzyme, as demonstrated by in vitro enzyme assays and in vivo metabolite determinations. Both the interaction and the activation of enzyme activity require apo-DarB and are inhibited by c-di-AMP. Under conditions of potassium starvation and corresponding low c-di-AMP levels, the demand for citric acid cycle intermediates is increased. Apo-DarB helps to replenish the cycle by activating both pyruvate carboxylase gene expression and enzymatic activity via triggering the stringent response as a result of its interaction with the (p)ppGpp synthetase Rel and by direct interaction with the enzyme, respectively. IMPORTANCE If bacteria experience a starvation for potassium, by far the most abundant metal ion in every living cell, they have to activate high-affinity potassium transporters, switch off growth activities such as translation and transcription of many genes or replication, and redirect the metabolism in a way that the most essential functions of potassium can be taken over by metabolites. Importantly, potassium starvation triggers a need for glutamate-derived amino acids. In many bacteria, the responses to changing potassium availability are orchestrated by a nucleotide second messenger, cyclic di-AMP. c-di-AMP binds to factors involved directly in potassium homeostasis and to dedicated signal transduction proteins. Here, we demonstrate that in the Gram-positive model organism Bacillus subtilis, the c-di-AMP receptor protein DarB can bind to and, thus, activate pyruvate carboxylase, the enzyme responsible for replenishing the citric acid cycle. This interaction takes place under conditions of potassium starvation if DarB is present in the apo form and the cells are in need of glutamate. Thus, DarB links potassium availability to the control of central metabolism.


Assuntos
Bacillus subtilis , AMP Cíclico , AMP Cíclico/metabolismo , Bacillus subtilis/genética , Piruvato Carboxilase/metabolismo , Proteínas de Bactérias/metabolismo , Sistemas do Segundo Mensageiro/fisiologia , Fosfatos de Dinucleosídeos/metabolismo , Ácido Glutâmico/metabolismo , Potássio/metabolismo
10.
Annu Rev Microbiol ; 74: 159-179, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32603625

RESUMO

The second messenger molecule cyclic di-AMP (c-di-AMP) is formed by many bacteria and archaea. In many species that produce c-di-AMP, this second messenger is essential for viability on rich medium. Recent research has demonstrated that c-di-AMP binds to a large number of proteins and riboswitches, which are often involved in potassium and osmotic homeostasis. c-di-AMP becomes dispensable if the bacteria are cultivated on minimal media with low concentrations of osmotically active compounds. Thus, the essentiality of c-di-AMP does not result from an interaction with a single essential target but rather from the multilevel control of complex homeostatic processes. This review summarizes current knowledge on the homeostasis of c-di-AMP and its function(s) in the control of cellular processes.


Assuntos
Bactérias/metabolismo , AMP Cíclico/metabolismo , Homeostase , Sistemas do Segundo Mensageiro , Transdução de Sinais , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Bactérias/genética , Proteínas de Bactérias/metabolismo , AMP Cíclico/genética , Riboswitch
11.
J Biol Chem ; 294(24): 9605-9614, 2019 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-31061098

RESUMO

The signaling nucleotide cyclic di-AMP (c-di-AMP) is the only known essential second messenger in bacteria. Recently, c-di-AMP has been identified as being essential for controlling potassium uptake in the model organism Bacillus subtilis and several other bacteria. A B. subtilis strain lacking c-di-AMP is not viable at high potassium concentrations, unless the bacteria acquire suppressor mutations. In this study, we isolated such suppressor mutants and found mutations that reduced the activities of the potassium transporters KtrCD and KimA. Although c-di-AMP-mediated control of KtrCD has previously been demonstrated, it is unknown how c-di-AMP affects KimA activity. Using the DRaCALA screening assay, we tested for any interactions of KimA and other potential target proteins in B. subtilis with c-di-AMP. This assay identified KimA, as well as the K+/H+ antiporter KhtT, the potassium exporter CpaA (YjbQ), the osmoprotectant transporter subunit OpuCA, the primary Mg2+ importer MgtE, and DarB (YkuL), a protein of unknown function, as bona fide c-di-AMP-binding proteins. Further, binding of c-di-AMP to KimA inhibited potassium uptake. Our results indicate that c-di-AMP controls KimA-mediated potassium transport at both kimA gene expression and KimA activity levels. Moreover, the discovery that potassium exporters are c-di-AMP targets indicates that this second messenger controls potassium homeostasis in B. subtilis at a global level by binding to riboswitches and to different classes of transport proteins involved in potassium uptake and export.


Assuntos
Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Fosfatos de Dinucleosídeos/metabolismo , Homeostase , Potássio/metabolismo , Sistemas do Segundo Mensageiro/fisiologia , Bacillus subtilis/genética , Bacillus subtilis/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Mutação
12.
J Bacteriol ; 201(10)2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30745376

RESUMO

Cyclic di-AMP (c-di-AMP) is a second messenger involved in diverse metabolic processes, including osmolyte uptake, cell wall homeostasis, and antibiotic and heat resistance. In Lactococcus lactis, a lactic acid bacterium which is used in the dairy industry and as a cell factory in biotechnological processes, the only reported interaction partners of c-di-AMP are the pyruvate carboxylase and BusR, the transcription regulator of the busAB operon for glycine betaine uptake. However, recent studies uncovered a major role of c-di-AMP in the control of potassium homeostasis, and potassium is the signal that triggers c-di-AMP synthesis. In this study, we have identified KupA and KupB, which belong to the Kup/HAK/KT family, as novel c-di-AMP binding proteins. Both proteins are high-affinity potassium transporters, and their transport activities are inhibited by binding of c-di-AMP. Thus, in addition to the well-studied Ktr/Trk potassium channels, KupA and KupB represent a second class of potassium transporters that are subject to inhibition by c-di-AMP.IMPORTANCE Potassium is an essential ion in every living cell. Even though potassium is the most abundant cation in cells, its accumulation can be toxic. Therefore, the level of potassium has to be tightly controlled. In many Gram-positive bacteria, the second messenger cyclic di-AMP plays a key role in the control of potassium homeostasis by binding to potassium transporters and regulatory proteins and RNA molecules. In the lactic acid bacterium Lactococcus lactis, none of these conserved c-di-AMP-responsive molecules are present. In this study, we demonstrate that the KupA and KupB proteins of L. lactis IL1403 are high-affinity potassium transporters and that their transport activity is inhibited by the second messenger c-di-AMP.


Assuntos
Proteínas de Bactérias/metabolismo , Fosfatos de Dinucleosídeos/metabolismo , Lactococcus lactis/enzimologia , Proteínas de Membrana Transportadoras/metabolismo , Potássio/metabolismo , Proteínas de Bactérias/genética , Transporte Biológico , Lactococcus lactis/genética , Proteínas de Membrana Transportadoras/genética , Ligação Proteica
13.
J Mol Biol ; 431(5): 908-927, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30668970

RESUMO

The "International Symposium on Nucleotide Second Messenger Signaling in Bacteria" (September 30-October 3, 2018, Berlin), which was organized within the framework of DFG Priority Programme 1879 (www.spp1879.de), brought together 125 participants from 20 countries to discuss recent progress and future trends in this field. Even 50 years after its discovery, (p)ppGpp is venturing into exciting new fields, especially in gram-positive bacteria. After triggering the current renaissance in bacterial second messenger research, c-di-GMP is becoming ever more global with abounding new molecular mechanisms of action and physiological functions. The more recently discovered c-di-AMP is rapidly catching up and has now been found even in archaea, with its function in osmotic homeostasis being conserved across kingdom boundaries. Small modules associated with mobile genetic elements, which make and react to numerous novel mixed cyclic dinucleotides, seem to roam around rather freely in the bacterial world. Finally, many novel and old nucleotide molecules are still lurking around in search of a function. Across many talks it became apparent that (p)ppGpp, c-di-GMP and GTP/ATP can share and compete for binding sites (e.g., the Walker A motif in GTP/ATPases) with intriguing regulatory consequences, thus contributing to the emergent trend of systemwide networks that interconnect diverse signaling nucleotides. Overall, this inspiring conference made it clear that second messenger signaling is currently one of the most dynamic and exciting areas in microbial molecular biology and physiology, with major impacts ranging from microbial systems biology and ecology to infection biology.


Assuntos
Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Nucleotídeos/metabolismo , Sistemas do Segundo Mensageiro/fisiologia , Transdução de Sinais/fisiologia , Adenosina Trifosfatases/metabolismo , Sítios de Ligação , Regulação Bacteriana da Expressão Gênica/fisiologia , Guanosina Trifosfato/metabolismo , Nucleotídeos Cíclicos/metabolismo
14.
J Bacteriol ; 201(1)2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30224435

RESUMO

Cyclic di-AMP is a second-messenger nucleotide that is produced by many bacteria and some archaea. Recent work has shown that c-di-AMP is unique among the signaling nucleotides, as this molecule is in many bacteria both essential on one hand and toxic upon accumulation on the other. Moreover, in bacteria, like Bacillus subtilis, c-di-AMP controls a biological process, potassium homeostasis, by binding both potassium transporters and riboswitch molecules in the mRNAs that encode the potassium transporters. In addition to the control of potassium homeostasis, c-di-AMP has been implicated in many cellular activities, including DNA repair, cell wall homeostasis, osmotic adaptation, biofilm formation, central metabolism, and virulence. c-di-AMP is synthesized and degraded by diadenylate cyclases and phosphodiesterases, respectively. In the diadenylate cyclases, one type of catalytic domain, the diadenylate cyclase (DAC) domain, is coupled to various other domains that control the localization, the protein-protein interactions, and the regulation of the enzymes. The phosphodiesterases have a catalytic core that consists either of a DHH/DHHA1 or of an HD domain. Recent findings on the occurrence, domain organization, activity control, and structural features of diadenylate cyclases and phosphodiesterases are discussed in this review.


Assuntos
Adenilil Ciclases/metabolismo , Bacillus subtilis/enzimologia , Bacillus subtilis/metabolismo , Fosfatos de Dinucleosídeos/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Adenilil Ciclases/química , Adenilil Ciclases/genética , Diester Fosfórico Hidrolases/química , Diester Fosfórico Hidrolases/genética , Domínios Proteicos
15.
Front Microbiol ; 9: 2100, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30258417

RESUMO

Lactococcus lactis is a promising candidate for the development of mucosal vaccines. More than 20 years of experimental research supports this immunization approach. In addition, 3' 5'- cyclic di-adenosine monophosphate (c-di-AMP) is a bacterial second messenger that plays a key role in the regulation of diverse physiological functions (potassium and cellular wall homeostasis, among others). Moreover, recent studies showed that c-di-AMP has a strong mucosal adjuvant activity that promotes both humoral and cellular immune responses. In this study, we report the development of a novel mucosal vaccine prototype based on a genetically engineered L. lactis strain. First, we demonstrate that homologous expression of cdaA gen in L. lactis is able to increase c-di-AMP levels. Thus, we hypothesized that in vivo synthesis of the adjuvant can be combined with production of an antigen of interest in a separate form or jointly in the same strain. Therefore, a specifically designed fragment of the trans-sialidase (TScf) enzyme from the Trypanosoma cruzi parasite, the etiological agent of Chagas disease, was selected to evaluate as proof of concept the immune response triggered by our vaccine prototypes. Consequently, we found that oral administration of a L. lactis strain expressing antigenic TScf combined with another L. lactis strain producing the adjuvant c-di-AMP could elicit a TS-specific immune response. Also, an additional L. lactis strain containing a single plasmid with both cdaA and tscf genes under the Pcit and Pnis promoters, respectively, was also able to elicit a specific immune response. Thus, the current report is the first one to describe an engineered L. lactis strain that simultaneously synthesizes the adjuvant c-di-AMP as well as a heterologous antigen in order to develop a simple and economical system for the formulation of vaccine prototypes using a food grade lactic acid bacterium.

16.
J Bacteriol ; 200(12)2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29610213

RESUMO

Cyclic di-AMP (c-di-AMP) is an important second messenger in bacteria. In most Firmicutes, the molecule is required for growth in complex media but also toxic upon accumulation. In an article on their current study, Zarrella and coworkers present a suppressor analysis of a Streptococcus pneumoniae strain that is unable to degrade c-di-AMP (T. M. Zarrella, D. W. Metzger, and G. Bai, J Bacteriol 200:e00045-18, 2018, https://doi.org/10.1128/JB.00045-18). Their study identifies new links between c-di-AMP and potassium homeostasis and supports the hypothesis that c-di-AMP serves as a second messenger to report about the intracellular potassium concentrations.


Assuntos
AMP Cíclico/metabolismo , Bactérias Gram-Positivas/metabolismo , Potássio/metabolismo , Regulação Bacteriana da Expressão Gênica , Bactérias Gram-Positivas/genética , Homeostase , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , Fósforo-Oxigênio Liases/genética , Fósforo-Oxigênio Liases/metabolismo , Sistemas do Segundo Mensageiro
17.
Curr Genet ; 64(1): 191-195, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28825218

RESUMO

Potassium and glutamate are the most abundant ions in every living cell. Whereas potassium plays a major role to keep the cellular turgor and to buffer the negative charges of the nucleic acids, the major function of glutamate is to serve as the universal amino group donor. In addition, both ions are involved in osmoprotection in bacterial cells. Here, we discuss how bacterial cells maintain the homeostasis of both ions and how adaptive evolution allows them to live even at extreme potassium limitation. Interestingly, positively charged amino acids are able to partially replace potassium, likely by buffering the negative charge of DNA. A major factor involved in the control of potassium homeostasis in Gram-positive bacteria is the essential second messenger cyclic di-AMP. This nucleotide is synthesized in response to the potassium concentration and in turn controls the expression and activity of potassium transporters. We discuss the link between the two major ions, DNA and the second messenger c-di-AMP.


Assuntos
AMP Cíclico/metabolismo , Ácido Glutâmico/metabolismo , Íons/metabolismo , Potássio/metabolismo , Sistemas do Segundo Mensageiro , Adaptação Biológica , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Homeostase , Concentração de Íons de Hidrogênio
18.
Trends Microbiol ; 26(3): 175-185, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28965724

RESUMO

Bacteria use second-messenger molecules to adapt to their environment. Several second messengers, among them cyclic di-AMP (c-di-AMP), have been discovered and intensively studied. Interestingly, c-di-AMP is essential for growth of Gram-positive bacteria such as Bacillus subtilis, Listeria monocytogenes, and Staphylococcus aureus. Many studies demonstrated that perturbation of c-di-AMP metabolism affects the integrity of the bacterial cell envelope. Therefore, it has been assumed that the nucleotide is essential for proper cell envelope synthesis. In this Opinion paper, we propose that the cell envelope phenotypes caused by perturbations of c-di-AMP metabolism can be interpreted differently: c-di-AMP might indirectly control cell envelope integrity by modulating the turgor, a physical variable that needs to be tightly adjusted. We also discuss open questions related to c-di-AMP metabolism that need to be urgently addressed by future studies.


Assuntos
Membrana Celular/metabolismo , AMP Cíclico/metabolismo , Bactérias Gram-Positivas/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Osmorregulação/fisiologia , Bacillus subtilis/metabolismo , Proteínas de Bactérias , Parede Celular/metabolismo , Listeria monocytogenes/metabolismo , Fenótipo , Sistemas do Segundo Mensageiro , Staphylococcus aureus/metabolismo
19.
Methods Mol Biol ; 1657: 347-359, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28889307

RESUMO

To identify cytosolic proteins that bind to cyclic di-AMP, a biotinylated analog of the nucleotide is used for protein pull-down experiments. In this approach, biotinylated c-di-AMP is coupled to Streptactin-covered beads. After protein separation using standard SDS-PAGE, the protein(s) of interest are identified by mass spectrometric analyses.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Fosfatos de Dinucleosídeos/metabolismo , Microesferas , Proteínas de Bactérias/metabolismo , Biotinilação , Eletroforese em Gel de Poliacrilamida , Espectrometria de Massas , Ligação Proteica , Proteômica/métodos
20.
mBio ; 8(4)2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28679749

RESUMO

Potassium is the most abundant metal ion in every living cell. This ion is essential due to its requirement for the activity of the ribosome and many enzymes but also because of its role in buffering the negative charge of nucleic acids. As the external concentrations of potassium are usually low, efficient uptake and intracellular enrichment of the ion is necessary. The Gram-positive bacterium Bacillus subtilis possesses three transporters for potassium, KtrAB, KtrCD, and the recently discovered KimA. In the absence of the high-affinity transporters KtrAB and KimA, the bacteria were unable to grow at low potassium concentrations. However, we observed the appearance of suppressor mutants that were able to overcome the potassium limitation. All these suppressor mutations affected amino acid metabolism, particularly arginine biosynthesis. In the mutants, the intracellular levels of ornithine, citrulline, and arginine were strongly increased, suggesting that these amino acids can partially substitute for potassium. This was confirmed by the observation that the supplementation with positively charged amino acids allows growth of B. subtilis even at the extreme potassium limitation that the bacteria experience if no potassium is added to the medium. In addition, a second class of suppressor mutations allowed growth at extreme potassium limitation. These mutations result in increased expression of KtrAB, the potassium transporter with the highest affinity and therefore allow the acquisition and accumulation of the smallest amounts of potassium ions from the environment.IMPORTANCE Potassium is essential for every living cell as it is required for the activity for many enzymes and for maintaining the intracellular pH by buffering the negative charge of the nucleic acids. We have studied the adaptation of the soil bacterium Bacillus subtilis to life at low potassium concentrations. If the major high-affinity transporters are missing, the bacteria are unable to grow unless they acquire mutations that result in the accumulation of positively charged amino acids such as ornithine, citrulline, and arginine. Supplementation of the medium with these amino acids rescued growth even in the absence of externally added potassium. Moreover, these growth conditions, which the bacteria experience as an extreme potassium limitation, can be overcome by the acquisition of mutations that result in increased expression of the high-affinity potassium transporter KtrAB. Our results indicate that positively charged amino acids can partially take over the function of potassium.


Assuntos
Adaptação Fisiológica , Bacillus subtilis/fisiologia , Potássio/análise , Potássio/farmacologia , Aminoácidos/metabolismo , Arginina/biossíntese , Bacillus subtilis/genética , Bacillus subtilis/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fosfatos de Dinucleosídeos/metabolismo , Transporte de Íons , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA