Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
J Bone Miner Res ; 38(4): 578-596, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36726200

RESUMO

In the skeleton, osteoblasts and osteoclasts synchronize their activities to maintain bone homeostasis and integrity. Investigating the molecular mechanisms governing bone remodeling is critical and helps understand the underlying biology of bone disorders. Initially, we have identified the ubiquitin-specific peptidase gene (Usp53) as a target of the parathyroid hormone in osteoblasts and a regulator of mesenchymal stem cell differentiation. Mutations in USP53 have been linked to a constellation of developmental pathologies. However, the role of Usp53 in bone has never been visited. Here we show that Usp53 null mice have a low bone mass phenotype in vivo. Usp53 null mice exhibit a pronounced decrease in trabecular bone indices including trabecular bone volume (36%) and trabecular number (26%) along with an increase in trabecular separation (13%). Cortical bone parameters are also impacted, showing a reduction in cortical bone volume (12%) and cortical bone thickness (15%). As a result, the strength and mechanical bone properties of Usp53 null mice have been compromised. At the cellular level, the ablation of Usp53 perturbs bone remodeling, augments osteoblast-dependent osteoclastogenesis, and increases osteoclast numbers. Bone marrow adipose tissue volume increased significantly with age in Usp53-deficient mice. Usp53 null mice displayed increased serum receptor activator of NF-κB ligand (RANKL) levels, and Usp53-deficient osteoblasts and bone marrow adipocytes have increased expression of Rankl. Mechanistically, USP53 regulates Rankl expression by enhancing the interaction between VDR and SMAD3. This is the first report describing the function of Usp53 during skeletal development. Our results put Usp53 in display as a novel regulator of osteoblast-osteoclast coupling and open the door for investigating the involvement of USP53 in pathologies. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Assuntos
Medula Óssea , Osteoblastos , Ligante RANK , Proteases Específicas de Ubiquitina , Animais , Camundongos , Adipócitos/metabolismo , Osso e Ossos/metabolismo , Medula Óssea/metabolismo , Diferenciação Celular/fisiologia , Homeostase , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Osteogênese , Ligante RANK/metabolismo , Proteases Específicas de Ubiquitina/metabolismo
2.
Int J Mol Sci ; 23(2)2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-35055125

RESUMO

PTH induces phosphorylation of the transcriptional coregulator NACA on serine 99 through Gαs and PKA. This leads to nuclear translocation of NACA and expression of the target gene Lrp6, encoding a coreceptor of the PTH receptor (PTH1R) necessary for full anabolic response to intermittent PTH (iPTH) treatment. We hypothesized that maintaining enough functional PTH1R/LRP6 coreceptor complexes at the plasma membrane through NACA-dependent Lrp6 transcription is important to ensure maximal response to iPTH. To test this model, we generated compound heterozygous mice in which one allele each of Naca and Lrp6 is inactivated in osteoblasts and osteocytes, using a knock-in strain with a Naca99 Ser-to-Ala mutation and an Lrp6 floxed strain (test genotype: Naca99S/A; Lrp6+/fl;OCN-Cre). Four-month-old females were injected with vehicle or 100 µg/kg PTH(1-34) once daily, 5 days a week for 4 weeks. Control mice showed significant increases in vertebral trabecular bone mass and biomechanical properties that were abolished in compound heterozygotes. Lrp6 expression was reduced in compound heterozygotes vs. controls. The iPTH treatment increased Alpl and Col1a1 mRNA levels in the control but not in the test group. These results confirm that NACA and LRP6 form part of a common genetic pathway that is necessary for the full anabolic effect of iPTH.


Assuntos
Anabolizantes/administração & dosagem , Células-Tronco Embrionárias/citologia , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Chaperonas Moleculares/genética , Hormônio Paratireóideo/administração & dosagem , Anabolizantes/farmacologia , Animais , Linhagem Celular , Membrana Celular/metabolismo , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Embrionárias/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Introdução de Genes , Camundongos , Chaperonas Moleculares/metabolismo , Mutagênese Sítio-Dirigida , Osteoblastos/metabolismo , Osteócitos/metabolismo , Hormônio Paratireóideo/farmacologia , Fosforilação , Transdução de Sinais/efeitos dos fármacos , Microtomografia por Raio-X
3.
Int J Mol Sci ; 22(14)2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34299363

RESUMO

The ubiquitin-proteasome system regulates biological processes in normal and diseased states. Recent investigations have focused on ubiquitin-dependent modifications and their impacts on cellular function, commitment, and differentiation. Ubiquitination is reversed by deubiquitinases, including ubiquitin-specific peptidases (USPs), whose roles have been widely investigated. In this review, we explore recent findings highlighting the regulatory functions of USPs in osteoblasts and providing insight into the molecular mechanisms governing their actions during bone formation. We also give a brief overview of our work on USP53, a target of PTH in osteoblasts and a regulator of mesenchymal cell lineage fate decisions. Emerging evidence addresses questions pertaining to the complex layers of regulation exerted by USPs on osteoblast signaling. We provide a short overview of our and others' understanding of how USPs modulate osteoblastogenesis. However, further studies using knockout mouse models are needed to fully understand the mechanisms underpinning USPs actions.


Assuntos
Osteoblastos/metabolismo , Proteases Específicas de Ubiquitina/metabolismo , Animais , Linhagem da Célula/fisiologia , Humanos , Ativação Linfocitária/fisiologia , Células-Tronco Mesenquimais/metabolismo , Osteogênese/fisiologia , Transdução de Sinais/fisiologia , Ubiquitinação/fisiologia
4.
Sci Rep ; 11(1): 8418, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-33875709

RESUMO

We have previously shown that parathyroid hormone (PTH) induces the phosphorylation of the DNA-binding protein Nascent polypeptide associated complex And Coregulator alpha (NACA), leading to nuclear translocation of NACA and activation of target genes. Using ChIP-Seq against NACA in parallel with RNA-sequencing, we report the identification of Ubiquitin Specific Peptidase 53 (Usp53) as a target gene of PTH-activated NACA in osteoblasts. A binding site for NACA within the ChIP fragment from the Usp53 promoter was confirmed by electrophoretic mobility shift assay. Activity of the Usp53 promoter (- 2325/+ 238 bp) was regulated by the JUN-CREB complex and this activation relied on activated PKA and the presence of NACA. Usp53 knockdown in ST2 stromal cells stimulated expression of the osteoblastic markers Bglap2 (Osteocalcin) and Alpl (Alkaline phosphatase) and inhibited expression of the adipogenic markers Pparg and Cebpa. A similar effect was measured when knocking down Naca. During osteoblastogenesis, the impact of Usp53 knockdown on PTH responses varied depending on the maturation stage of the cells. In vivo implantation of Usp53-knockdown bone marrow stromal cells in immunocompromised mice showed an increase in osteoblast number and a decrease in adipocyte counts. Our data suggest that Usp53 modulates the fate of mesenchymal cells by impacting lineage selection.


Assuntos
Adipócitos/metabolismo , Diferenciação Celular , Células-Tronco Mesenquimais/metabolismo , Osteoblastos/metabolismo , Proteases Específicas de Ubiquitina/metabolismo , Adipogenia , Fosfatase Alcalina/metabolismo , Animais , Camundongos , Osteocalcina/metabolismo , Hormônio Paratireóideo/metabolismo
5.
Endocrinology ; 162(7)2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33693593

RESUMO

Vitamin D deficiency is associated with poor cancer outcome in humans, and administration of vitamin D or its analogs decreases tumor progression and metastasis in animal models. Using the mouse mammary tumor virus-polyoma middle T antigen (MMTV-PyMT) model of mammary cancer, we previously demonstrated a significant acceleration of carcinogenesis in animals on a low vitamin D diet and a reduction in spontaneous lung metastases when mice received vitamin D through perfusion. We investigate here the action mechanism for vitamin D in lung metastasis in the same non-immunodeficient model and demonstrate that it involves the control of epithelial to mesenchymal transition as well as interactions between chemokine C-X-C motif chemokine 12 (CXCL12) and its receptor C-X-C chemokine receptor type 4 (CXCR4). In vitro, 10-9M vitamin D treatment modifies the phenotype of MMTV-PyMT primary mammary tumor cells and significantly decreases their invasiveness and mammosphere formation capacity by 40% and 50%, respectively. Vitamin D treatment also inhibits phospho-signal transducer and activator of transcription 3 (p-STAT3), zinc finger E-box-binding homeobox 1 (Zeb1), and vimentin by 52%, 75%, and 77%, respectively, and increases E-cadherin by 87%. In vivo, dietary vitamin D deficiency maintains high levels of Zeb1 and p-STAT3 in cells from primary mammary tumors and increases CXCL12 expression in lung stroma by 64%. In lung metastases, vitamin D deficiency increases CXCL12/CXCR4 co-localization by a factor of 2.5. These findings indicate an involvement of vitamin D in mammary cancer "seed" (primary tumor cell) and "soil" (metastatic site) and link vitamin D deficiency to epithelial-to-mesenchymal transition (EMT), CXCL12/CXCR4 signaling, and accelerated metastasis, suggesting vitamin D repleteness in breast cancer patients could enhance the efficacy of co-administered therapies in preventing spread to distant organs.


Assuntos
Quimiocina CXCL12/análise , Transição Epitelial-Mesenquimal/fisiologia , Neoplasias Pulmonares/secundário , Neoplasias Mamárias Experimentais/fisiopatologia , Receptores CXCR4/análise , Deficiência de Vitamina D/patologia , Animais , Linhagem Celular Tumoral , Quimiocina CXCL12/farmacologia , Quimiocina CXCL12/fisiologia , Feminino , Neoplasias Pulmonares/química , Neoplasias Mamárias Experimentais/patologia , Camundongos , Invasividade Neoplásica/fisiopatologia , Receptores CXCR4/fisiologia , Transdução de Sinais , Vitamina D/análogos & derivados , Vitamina D/farmacologia , Vitamina D/fisiologia , Deficiência de Vitamina D/fisiopatologia
6.
J Cell Physiol ; 236(2): 1195-1213, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32686190

RESUMO

The catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is a pleiotropic enzyme involved in DNA repair, cell cycle control, and transcription regulation. A potential role for DNA-PKcs in the regulation of osteoblastogenesis remains to be established. We show that pharmacological inhibition of DNA-PKcs kinase activity or gene silencing of Prkdc (encoding DNA-PKcs) in murine osteoblastic MC3T3-E1 cells and human adipose-derived mesenchymal stromal cells markedly enhanced osteogenesis and the expression of osteoblast differentiation marker genes. Inhibition of DNA-PKcs inhibited cell cycle progression and increased osteogenesis by significantly enhancing the bone morphogenetic protein 2 response in osteoblasts and other mesenchymal cell types. Importantly, in vivo pharmacological inhibition of the kinase enhanced bone biomechanical properties. Bones from osteoblast-specific conditional Prkdc-knockout mice exhibited a similar phenotype of increased stiffness. In conclusion, DNA-PKcs negatively regulates osteoblast differentiation, and therefore DNA-PKcs inhibitors may have therapeutic potential for bone regeneration and metabolic bone diseases.


Assuntos
Proteína Morfogenética Óssea 2/genética , Proteína Quinase Ativada por DNA/genética , Proteínas de Ligação a DNA/genética , Osteogênese/genética , Animais , Domínio Catalítico/genética , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Proteína Quinase Ativada por DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/antagonistas & inibidores , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos , Camundongos Knockout , Osteoblastos/metabolismo , Osteogênese/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
7.
Bone ; 141: 115624, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32877713

RESUMO

Intermittent administration of PTH(1-34) has a profound osteoanabolic effect on the skeleton. At the cellular level, osteoblasts and osteocytes are two crucial cell types that respond to PTH stimulation in bone. The transcriptional cofactor Nascent polypeptide Associated Complex and coregulator alpha (NACA) is a downstream target of the PTH-Gαs-PKA axis in osteoblasts. NACA functions as a transcriptional cofactor affecting bZIP factor-mediated transcription of target promoters in osteoblasts, such as Osteocalcin (Bglap2). Here, we used RNA-Seq and ChIP-Seq against NACA in PTH-treated MC3T3-E1 osteoblastic cells to identify novel targets of the PTH-activated NACA. Our approach identified Nuclear factor interleukin-3-regulated (Nfil3) as a target promoter of this pathway. Knockdown of Naca reduced the response of Nfil3 to PTH(1-34) stimulation. In silico analysis of the Nfil3 promoter revealed potential binding sites for NACA (located within the ChIP fragment) and CREB. We show that following PTH stimulation, phosphorylated-CREB binds the proximal promoter of Nfil3 in osteoblasts. The activity of the Nfil3 promoter (-818/+182 bp) is regulated by CREB and this activation relies on the presence of NACA. In addition, we show that knockdown of Nfil3 enhances the expression of osteoblastic differentiation markers in MC3T3-E1 cells while it represses osteocytic marker gene expression in IDG-SW3 cells. These results show that the PTH-induced NACA axis regulates Nfil3 expression and suggest that NFIL3 acts as a transcriptional repressor in osteoblasts while it exhibits differential activity as an activator in osteocytes.


Assuntos
Osteócitos , Transdução de Sinais , Expressão Gênica , Regulação da Expressão Gênica , Osteoblastos/metabolismo , Osteócitos/metabolismo , Hormônio Paratireóideo/metabolismo , Hormônio Paratireóideo/farmacologia
8.
JCI Insight ; 4(13)2019 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-31292298

RESUMO

We induced chronic kidney disease (CKD) with adenine in WT mice, mice with osteocyte-specific deletion of Cyp27b1, encoding the 25-hydroxyvitamin D 1(OH)ase [Oct-1(OH)ase-/-], and mice with global deletion of Cyp27b1 [global-1α(OH)ase-/-]; we then compared extraskeletal calcification. After adenine treatment, mice displayed increased blood urea nitrogen, decreased serum 1,25(OH)2D, and severe hyperparathyroidism. Skeletal expression of Cyp27b1 and of sclerostin and serum sclerostin all increased in WT mice but not in Oct-1α(OH)ase-/- mice or global-1α(OH)ase-/- mice. In contrast, skeletal expression of BMP2 and serum BMP2 rose in the Oct-1α(OH)ase-/- mice and in the global-1α(OH)ase-/- mice. Extraskeletal calcification occurred in muscle and blood vessels of mice with CKD and was highest in Oct-1α(OH)ase-/-mice. In vitro, recombinant sclerostin (100 ng/mL) significantly suppressed BMP2-induced osteoblastic transdifferentiation of vascular smooth muscle A7r5 cells and diminished BMP2-induced mineralization. Our study provides evidence that local osteocytic production of 1,25(OH)2D stimulates sclerostin and inhibits BMP2 production in murine CKD, thus mitigating osteoblastic transdifferentiation and mineralization of soft tissues. Increased osteocytic 1,25(OH)2D production, triggered by renal malfunction, may represent a "primary defensive response" to protect the organism from ectopic calcification by increasing sclerostin and suppressing BMP2 production.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteína Morfogenética Óssea 2/metabolismo , Calcinose/patologia , Calcitriol/metabolismo , Insuficiência Renal Crônica/complicações , Uremia/complicações , 25-Hidroxivitamina D3 1-alfa-Hidroxilase/genética , 25-Hidroxivitamina D3 1-alfa-Hidroxilase/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/sangue , Adenina/toxicidade , Animais , Nitrogênio da Ureia Sanguínea , Proteína Morfogenética Óssea 2/sangue , Osso e Ossos/citologia , Osso e Ossos/metabolismo , Calcinose/sangue , Calcinose/etiologia , Calcitriol/sangue , Transdiferenciação Celular , Modelos Animais de Doenças , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos/metabolismo , Humanos , Masculino , Camundongos , Osteócitos/metabolismo , Insuficiência Renal Crônica/sangue , Insuficiência Renal Crônica/induzido quimicamente , Uremia/sangue , Uremia/induzido quimicamente
9.
J Biol Chem ; 294(20): 8184-8196, 2019 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-30948508

RESUMO

The transcriptional cofactor nascent polypeptide-associated complex and co-regulator α (NACA) regulates osteoblast maturation and activity. NACA functions, at least in part, by binding to Jun proto-oncogene, AP-1 transcription factor subunit (cJUN) and potentiating the transactivation of AP-1 targets such as osteocalcin (Bglap) and matrix metallopeptidase 9 (Mmp9). NACA activity is modulated by phosphorylation carried out by several kinases, but a phosphatase regulating NACA's activity remains to be identified. Here, we used affinity purification with MS in HEK293T cells to isolate NACA complexes and identified protein phosphatase 1 catalytic subunit α (PP1A) as a NACA-associated Ser/Thr phosphatase. NACA interacted with multiple components of the PP1A holoenzyme complex: the PPP1CA catalytic subunit and the regulatory subunits PPP1R9B, PPP1R12A and PPP1R18. MS analysis revealed that NACA co-expression with PPP1CA causes dephosphorylation of NACA at Thr-89, Ser-151, and Thr-174. NACA Ser/Thr-to-alanine variants displayed increased nuclear localization, and NACA dephosphorylation was associated with specific recruitment of novel NACA interactants, such as basic transcription factor 3 (BTF3) and its homolog BTF3L4. NACA and PP1A cooperatively potentiated cJUN transcriptional activity of the AP-1-responsive MMP9-luciferase reporter, which was abolished when Thr-89, Ser-151, or Thr-174 were substituted with phosphomimetic aspartate residues. We confirmed the NACA-PP1A interaction in MC3T3-E1 osteoblastic cells and observed that NACA phosphorylation status at PP1A-sensitive sites is important for the regulation of AP-1 pathway genes and for osteogenic differentiation and matrix mineralization. These results suggest that PP1A dephosphorylates NACA at specific residues, impacting cJUN transcriptional activity and osteoblast differentiation and function.


Assuntos
Diferenciação Celular , Núcleo Celular/metabolismo , Chaperonas Moleculares/metabolismo , Osteoblastos/metabolismo , Proteína Fosfatase 1/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , Transcrição Gênica , Transporte Ativo do Núcleo Celular/genética , Animais , Núcleo Celular/genética , Células HEK293 , Humanos , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Chaperonas Moleculares/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Osteoblastos/citologia , Fosforilação/genética , Proteína Fosfatase 1/genética , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas c-jun/genética , Elementos de Resposta , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
10.
Biochim Biophys Acta Gene Regul Mech ; 1861(2): 61-71, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29413898

RESUMO

In the nucleus of differentiated osteoblasts, the alpha chain of nascent polypeptide associated complex (αNAC) interacts with cJUN transcription factors to regulate the expression of target genes, including Osteocalcin (Bglap2). PTH induces the phosphorylation of αNAC on serine 99 through a Gαs-PKA dependent pathway. This leads to activation of αNAC and expression of Bglap2. To identify additional target genes regulated by PTH-activated αNAC, we performed ChIP-Seq against αNAC in PTH-treated MC3T3-E1 cells. This identified Low density lipoprotein receptor-Related Protein 6 (Lrp6) as a potential αNAC target. LRP6 acts as a co-receptor for the PTH receptor to allow optimal activation of PTH signaling. PTH increased Lrp6 mRNA levels in primary osteoblasts. Conventional quantitative ChIP confirmed the ChIP-Seq results. To assess whether αNAC plays a critical role in PTH-stimulated Lrp6 expression, we knocked-down Naca expression in MC3T3-E1 cells. Reduction of αNAC levels decreased basal expression of Lrp6 by 30% and blocked the stimulation of Lrp6 expression by PTH. We cloned the proximal mouse Lrp6 promoter (-2523/+120 bp) upstream of the luciferase reporter. Deletion and point mutations analysis in electrophoretic mobility shift assays and transient transfections identified a functional αNAC binding site centered around -343 bp. ChIP and ChIP-reChIP against JUND and αNAC showed that they cohabit on the proximal Lrp6 promoter. Luciferase assays confirmed that PTH-activated αNAC potentiated JUND-mediated Lrp6 transcription and Jund knockdown abolished this response. This study identified a novel αNAC target gene induced downstream of PTH signaling and represents the first characterization of the regulation of Lrp6 transcription in osteoblasts.


Assuntos
Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Chaperonas Moleculares/genética , Hormônio Paratireóideo/farmacologia , Ativação Transcricional/efeitos dos fármacos , Animais , Sequência de Bases , Linhagem Celular , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Camundongos , Chaperonas Moleculares/metabolismo , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteocalcina/genética , Osteocalcina/metabolismo , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-jun/genética , Proteínas Proto-Oncogênicas c-jun/metabolismo , Interferência de RNA , Receptor Tipo 1 de Hormônio Paratireóideo/genética , Receptor Tipo 1 de Hormônio Paratireóideo/metabolismo , Homologia de Sequência do Ácido Nucleico
11.
J Steroid Biochem Mol Biol ; 177: 77-82, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29107736

RESUMO

Mature osteoclasts express the vitamin D receptor (VDR) and are able to synthesise and respond to 1,25(OH)2D3 via CYP27B1 enzyme activity. Whether vitamin D signalling within osteoclasts is necessary for the regulation of osteoclastic bone resorption in an in vivo setting is unclear. To determine the requirement for the VDR- and CYP27B1-mediated activity in mature osteoclasts, conditional deletion mouse models were created whereby either Vdr or Cyp27b1 gene was inactivated by breeding either Vdrfl/fl or Cyp27b1fl/fl mice with Cathepsin K-Cre transgenic mice (CstkCre) to generate CtskCre/Vdr-/- and CtskCre/Cyp27b1-/- mice respectively. To account for potential CtskCre-meaited off-target deletion of Vdr, Dmp1Cre were also used determine the effect of Vdr deletion in osteocytes. Furthermore, CtskCre/Vdr-/- mice were ovariectomised (OVX) to assess the role of VDR in osteoclasts under bone-loss conditions and bone marrow precursor cells were cultured under osteoclastogenic conditions to assess osteoclast formation. Six-week-old CtskCre/Vdr-/- female mice demonstrated a 15% decrease in femoral BV/TV (p<0.05). In contrast, BV/TV remained unchanged in CtskCre/Cyp27b1-/- mice as well as in Dmp1Cre/VDR-/- mice. When CtskCre/Vdr-/- mice were subjected to OVX, the bone loss that occurred in CtskCre/Vdr-/- was predominantly due to a diminished volume of thinner trabeculae when compared to control levels. These changes in bone volume in CtskCre/Vdr-/- mice occurred without an observable histological change in osteoclast numbers or size. However, while cultured bone marrow-derived osteoclasts from CtskCre/Vdr-/- mice were marginally increased when compared to VDRfl/fl mice, elevated expression of genes such as Cathepsin K, Nfatc1 and VATPase was observed. Collectively, these data indicate that the absence of VDR in mature osteoclasts causes exacerbated bone loss in young mice and during OVX which is associated with enhanced osteoclastic activity and without increased osteoclastogenesis.


Assuntos
Reabsorção Óssea/fisiopatologia , Osteoclastos/fisiologia , Receptores de Calcitriol/fisiologia , 25-Hidroxivitamina D3 1-alfa-Hidroxilase/fisiologia , Animais , Células da Medula Óssea/fisiologia , Células Cultivadas , Feminino , Fêmur/diagnóstico por imagem , Fêmur/fisiologia , Camundongos Knockout , Ovariectomia
12.
J Immunol ; 199(12): 3952-3958, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29109124

RESUMO

The vitamin D receptor participates in the control of IgE class-switch recombination in B cells. The physiologic vitamin D receptor agonist, 1,25(OH)2D3 (calcitriol), is synthesized by the essential enzyme 25-hydroxyvitamin D3-1α-hydroxylase (CYP27B1), which can be expressed by activated immune cells. The role of endogenous calcitriol synthesis for the regulation of IgE has not been proven. In this study, we investigated IgE-responses in Cyp27b1-knockout (KO) mice following sensitization to OVA or intestinal infection with Heligmosomoides polygyrus Specific Igs and plasmablasts were determined by ELISA and ELISpot, Cyp27b1 expression was measured by quantitative PCR. The data show elevated specific IgE and IgG1 concentrations in the blood of OVA-sensitized Cyp27b1-KO mice compared with wild-type littermates (+898 and +219%). Accordingly, more OVA-specific IgG1-secreting cells are present in spleen and fewer in the bone marrow of Cyp27b1-KO mice. Ag-specific mechanisms are suggested as the leucopoiesis is in general unchanged and activated murine B and T lymphocytes express Cyp27b1 Accordingly, elevated specific IgE concentrations in the blood of sensitized T cell-specific Cyp27b1-KO mice support a lymphocyte-driven mechanism. In an independent IgE-inducing model, i.e., intestinal infection with H. polygyrus, we validated the increase of total and specific IgE concentrations of Cyp27b1-KO compared with wild-type mice, but not those of IgG1 or IgA. We conclude that endogenous calcitriol has an impact on the regulation of IgE in vivo. Our data provide genetic evidence supporting previous preclinical and clinical findings and suggest that vitamin D deficiency not only promotes bone diseases but also type I sensitization.


Assuntos
25-Hidroxivitamina D3 1-alfa-Hidroxilase/fisiologia , Calcitriol/imunologia , Switching de Imunoglobulina , Imunoglobulina E/sangue , 25-Hidroxivitamina D3 1-alfa-Hidroxilase/deficiência , Animais , Linfócitos B/imunologia , Medula Óssea/imunologia , Calcitriol/biossíntese , Calcitriol/deficiência , Feminino , Helmintíase Animal/imunologia , Imunoglobulina E/imunologia , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Enteropatias Parasitárias/imunologia , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nematospiroides dubius/imunologia , Especificidade de Órgãos , Ovalbumina/imunologia , Receptores de Calcitriol/fisiologia , Baço/imunologia , Linfócitos T/imunologia , Deficiência de Vitamina D/imunologia
13.
Cancer Res ; 77(8): 2161-2172, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28242615

RESUMO

CYP24A1, the primary inactivating enzyme for vitamin D, is often overexpressed in human cancers, potentially neutralizing the antitumor effects of calcitriol, the active form of vitamin D. However, it is unclear whether CYP24A1 expression serves as a functional contributor versus only a biomarker for tumor progression. In this study, we investigated the role of CYP24A1 on malignant progression of a murine model of BrafV600E -induced papillary thyroid cancer (PTC). Mice harboring wild-type Cyp24a1 (BVECyp24a1-wt) developed PTC at 5 weeks of age. Mice harboring a homozygous deletion of Cyp24a1 (BVECyp24a1-null) exhibited a 4-fold reduction in tumor growth. Notably, we found the tumorigenic potential of BVECyp24a1-null-derived tumor cells to be nearly abolished in immunocompromised nude mice. This phenotype was associated with downregulation of the MAPK, PI3K/Akt, and TGFß signaling pathways and a loss of epithelial-mesenchymal transition (EMT) in BVECyp24a1-null cells, associated with downregulation of genes involved in EMT, tumor invasion, and metastasis. While calcitriol treatment did not decrease cell proliferation in BVECyp24a1-null cells, it strengthened antitumor responses to the BRAFV600E inhibitor PLX4720 in both BVECyp24a1-null and BVECyp24a1-wt cells. Our findings offer direct evidence that Cyp24a1 functions as an oncogene in PTC, where its overexpression activates multiple signaling cascades to promote malignant progression and resistance to PLX4720 treatment. Cancer Res; 77(8); 2161-72. ©2017 AACR.


Assuntos
Carcinoma/tratamento farmacológico , Carcinoma/enzimologia , Indóis/farmacologia , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Sulfonamidas/farmacologia , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/enzimologia , Vitamina D3 24-Hidroxilase/metabolismo , Animais , Carcinoma/genética , Carcinoma Papilar , Progressão da Doença , Feminino , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Camundongos Nus , Camundongos Transgênicos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Câncer Papilífero da Tireoide , Neoplasias da Glândula Tireoide/genética , Vitamina D3 24-Hidroxilase/genética
14.
Endocrinology ; 157(6): 2204-16, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27119753

RESUMO

Biologically active vitamin D (1,25-dihydroxycholecalciferol or 1,25(OH)2D) is synthetized from inactive prohormone 25-hydroxycholecalciferol (25(OH)D) by the enzyme CYP27B1 1-α-hydroxylase in kidney and several extrarenal tissues including breast. Although the development of breast cancer has been linked to inadequate vitamin D status, the importance of bioactive vitamin D production within tumors themselves is not fully understood. To investigate the role of tumoral vitamin D production in mammary epithelial cell progression to breast cancer, we conducted a Cre-loxP-mediated Cyp27b1 gene ablation in the mammary epithelium of the polyoma middle T antigen-mouse mammary tumor virus (PyMT-MMTV) mouse breast cancer model. Targeted ablation of Cyp27b1 was accompanied by significant acceleration in initiation of spontaneous mammary tumorigenesis. In vivo, cell proliferation, angiogenesis, cell cycle progression, and survival markers were up-regulated in tumors by Cyp27b1 ablation, and apoptosis was decreased. AK thymoma (AKT) phosphorylation and expression of several components of nuclear factor κB (NF-κB), integrin, and signal transducer and activator of transcription 3 (STAT3) signaling pathways were increased in Cyp27b1-ablated tumors compared with nonablated controls. In vitro, 1,25(OH)2D treatment induced a strong antiproliferative action on tumor cells from both ablated and nonablated mice, accompanied by rapid disappearance of NF-κB p65 from the nucleus and segregation in the cytoplasm. In contrast, treatment with the metabolic precursor 25(OH)D was only effective against cells from nonablated mice. 25(OH)D did not inhibit growth of Cyp27b1-ablated cells, and their nuclear NF-κB p65 remained abundant. Our findings demonstrate that in-tumor CYP27B1 1-α-hydroxylase activity plays a crucial role in controlling early oncogene-mediated mammary carcinogenesis events, at least in part by modulating tumoral cell NF-κB p65 nuclear translocation.


Assuntos
25-Hidroxivitamina D3 1-alfa-Hidroxilase/metabolismo , Neoplasias Mamárias Animais/metabolismo , Neoplasias Mamárias Animais/patologia , NF-kappa B/metabolismo , Vitamina D/biossíntese , 25-Hidroxivitamina D3 1-alfa-Hidroxilase/genética , Animais , Apoptose/genética , Apoptose/fisiologia , Calcifediol/biossíntese , Calcifediol/sangue , Calcitriol/biossíntese , Calcitriol/sangue , Cálcio/sangue , Proliferação de Células/genética , Proliferação de Células/fisiologia , Progressão da Doença , Feminino , Imuno-Histoquímica , Técnicas In Vitro , Masculino , Neoplasias Mamárias Animais/sangue , Neoplasias Mamárias Animais/enzimologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Células Tumorais Cultivadas , Vitamina D/sangue
15.
J Clin Invest ; 126(2): 667-80, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26784541

RESUMO

CYP24A1 (hereafter referred to as CYP24) enzymatic activity is pivotal in the inactivation of vitamin D metabolites. Basal renal and extrarenal CYP24 is usually low but is highly induced by its substrate 1,25-dihydroxyvitamin D. Unbalanced high and/or long-lasting CYP24 expression has been proposed to underlie diseases like chronic kidney disease, cancers, and psoriasis that otherwise should favorably respond to supplemental vitamin D. Using genetically modified mice, we have shown that renal phosphate wasting hypophosphatemic states arising from high levels of fibroblast growth factor 23 (FGF23) are also associated with increased renal Cyp24 expression, suggesting that elevated CYP24 activity is pivotal to the pathophysiology of these disorders. We therefore crossed 2 mouse strains, each with distinct etiology for high levels of circulating FGF23, onto a Cyp24-null background. Specifically, we evaluated Cyp24 deficiency in Hyp mice, the murine homolog of X-linked dominant hypophosphatemic rickets, and transgenic mice that overexpress a mutant FGF23 (FGF23R176Q) that is associated with the autosomal dominant form of hypophosphatemic rickets. Loss of Cyp24 in these murine models of human disease resulted in near-complete recovery of rachitic/osteomalacic bony abnormalities in the absence of any improvement in the serum biochemical profile. Moreover, treatment of Hyp and FGF23R1760-transgenic mice with the CYP24 inhibitor CTA102 also ameliorated their rachitic bones. Our results link CYP24 activity to the pathophysiology of FGF23-dependent renal phosphate wasting states and implicate pharmacologic CYP24 inhibition as a therapeutic adjunct for their treatment.


Assuntos
Inibidores das Enzimas do Citocromo P-450/farmacologia , Fatores de Crescimento de Fibroblastos/metabolismo , Fosfatos/urina , Insuficiência Renal Crônica , Vitamina D3 24-Hidroxilase/antagonistas & inibidores , Síndrome de Emaciação , Animais , Modelos Animais de Doenças , Feminino , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos/genética , Humanos , Camundongos , Camundongos Knockout , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/patologia , Insuficiência Renal Crônica/urina , Vitamina D3 24-Hidroxilase/genética , Vitamina D3 24-Hidroxilase/metabolismo , Síndrome de Emaciação/tratamento farmacológico , Síndrome de Emaciação/genética , Síndrome de Emaciação/patologia , Síndrome de Emaciação/urina
16.
Kidney Int ; 88(5): 1013-29, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26176830

RESUMO

Vitamin D hydroxylated at carbon 25 (25(OH)D) is generally recognized as a precursor of active vitamin D. Despite its low affinity for the vitamin D receptor (VDR), both deficient and excessive 25(OH)D levels are associated with poor clinical outcomes. Here we studied direct effects of 25(OH)D3 on the kidney using 25(OH)D-1α-hydroxylase (CYP27B1) knockout mice. The effects of 25(OH)D3 on unilateral ureteral obstruction were analyzed as proximal tubular cells and macrophages are two major cell types that take up 25(OH)D and contribute to the pathogenesis of kidney injury. Excess 25(OH)D3 in obstructed mice worsened oxidative stress and tubulointerstitial fibrosis, whereas moderate levels of 25(OH)D3 had no effects. The exacerbating effects of excess 25(OH)D3 were abolished in CYP27B1/VDR double-knockout mice and in macrophage-depleted CYP27B1 knockout mice. Excess 25(OH)D3 upregulated both M1 marker (TNF-α) and M2 marker (TGF-ß1) levels of kidney-infiltrating macrophages. In vitro analyses verified that excess 25(OH)D3 directly upregulated TNF-α and TGF-ß1 in cultured macrophages but not in tubular cells. TNF-α and 25(OH)D3 cooperatively induced oxidative stress by upregulating iNOS in tubular cells. Aggravated tubulointerstitial fibrosis in mice with excess 25(OH)D3 indicated that macrophage-derived TGF-ß1 also had a key role in the pathogenesis of surplus 25(OH)D3. Thus, excess 25(OH)D3 worsens tubulointerstitial injury by modulating macrophage phenotype.


Assuntos
Calcifediol/farmacologia , Túbulos Renais/patologia , Macrófagos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , 25-Hidroxivitamina D3 1-alfa-Hidroxilase/genética , Animais , Calcifediol/administração & dosagem , Calcifediol/metabolismo , Células Cultivadas , Feminino , Fibrose , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico Sintase Tipo II/metabolismo , Fenótipo , Receptores de Calcitriol/genética , Fator de Crescimento Transformador beta1/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima/efeitos dos fármacos , Obstrução Ureteral/complicações
17.
Mol Cell Biol ; 34(9): 1622-33, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24550008

RESUMO

The binding of PTH to its receptor induces Gα(s)-dependent cyclic AMP (cAMP) accumulation to turn on effector kinases, including protein kinase A (PKA). The phenotype of mice with osteoblasts specifically deficient for Gα(s) is mimicked by a mutation leading to cytoplasmic retention of the transcriptional coregulator αNAC, suggesting that Gαs and αNAC form part of a common genetic pathway. We show that treatment of osteoblasts with PTH(1-34) or the PKA-selective activator N(6)-benzoyladenosine cAMP (6Bnz-cAMP) leads to translocation of αNAC to the nucleus. αNAC was phosphorylated by PKA at serine 99 in vitro. Phospho-S99-αNAC accumulated in osteoblasts exposed to PTH(1-34) or 6Bnz-cAMP but not in treated cells expressing dominant-negative PKA. Nuclear accumulation was abrogated by an S99A mutation but enhanced by a phosphomimetic residue (S99D). Chromatin immunoprecipitation (ChIP) analysis showed that PTH(1-34) or 6Bnz-cAMP treatment leads to accumulation of αNAC at the Osteocalcin (Ocn) promoter. Altered gene dosages for Gα(s) and αNAC in compound heterozygous mice result in reduced bone mass, increased numbers of osteocytes, and enhanced expression of Sost. Our results show that αNAC is a substrate of PKA following PTH signaling. This enhances αNAC translocation to the nucleus and leads to its accumulation at target promoters to regulate transcription and affect bone mass.


Assuntos
Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Chaperonas Moleculares/metabolismo , Hormônio Paratireóideo/metabolismo , Células 3T3 , Transporte Ativo do Núcleo Celular , Sequência de Aminoácidos , Animais , Doenças Ósseas Metabólicas/genética , Doenças Ósseas Metabólicas/metabolismo , Doenças Ósseas Metabólicas/patologia , Núcleo Celular/metabolismo , Cromograninas , AMP Cíclico/análogos & derivados , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Masculino , Camundongos , Chaperonas Moleculares/análise , Dados de Sequência Molecular , Osteoblastos/metabolismo , Osteocalcina/genética , Fosforilação , Regiões Promotoras Genéticas , Alinhamento de Sequência , Transdução de Sinais
18.
Gene ; 538(2): 328-33, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24440290

RESUMO

Factor inhibiting ATF4-mediated transcription (FIAT) interacts with Nascent polypeptide associated complex and coregulator alpha (αNAC). In cultured osteoblastic cells, this interaction contributes to maximal FIAT-mediated inhibition of Osteocalcin (Ocn) gene transcription. We set out to demonstrate the physiological relevance of this interaction by altering gene dosage in compound Fiat and Naca (encoding αNAC) heterozygous mice. Compound Naca(+/-); Fiat(+/-) heterozygous animals were viable, developed normally, and exhibited no significant difference in body weight compared with control littermate genotypes. Animals with a single Fiat allele had reduced Fiat mRNA expression without changes in the expression of related family members. Expression of the osteocyte differentiation marker Dmp1 was elevated in compound heterozygotes. Static histomorphometry parameters were assessed at 8weeks of age using microcomputed tomography (µCT). Trabecular measurements were not different between genotypes. Cortical thickness and area were not affected by gene dosage, but we measured a significant increase in cortical porosity in compound heterozygous mice, without changes in biomechanical parameters. The bone phenotype of compound Naca(+/-); Fiat(+/-) heterozygotes confirms that FIAT and αNAC are part of a common genetic pathway and support a role for the FIAT/αNAC interaction in normal bone physiology.


Assuntos
Proteínas Correpressoras/genética , Dosagem de Genes , Chaperonas Moleculares/genética , Proteínas Nucleares/genética , Animais , Fenômenos Biomecânicos , Desenvolvimento Ósseo/genética , Osso e Ossos/fisiologia , Proteínas Correpressoras/metabolismo , Epistasia Genética , Feminino , Expressão Gênica , Heterozigoto , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Camundongos Transgênicos , Chaperonas Moleculares/metabolismo , Proteínas Nucleares/deficiência , Proteínas Nucleares/metabolismo , Fenótipo
19.
Gene ; 533(1): 246-52, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24095779

RESUMO

In osteoblasts, Integrin-Linked Kinase (ILK)-dependent phosphorylation of the cJUN transcriptional coactivator, αNAC, induces the nuclear accumulation of the coactivator and potentiates cJUN-dependent transcription. Mutation of the ILK phosphoacceptor site within the αNAC protein leads to cytoplasmic retention of the coactivator and cell-autonomous increases in osteoblastic activity. In order to gain further insight into the ILK-αNAC signaling cascade, we inactivated ILK using RNA knockdown in osteoblastic cells and engineered mice with specific ablation of ILK in osteoblasts. ILK knockdown in MC3T3-E1 osteoblast-like cells reduced phosphorylation of its downstream target glycogen synthase kinase 3ß (GSK3ß), which led to cytoplasmic retention of αNAC and increased mineralization with augmented expression of the osteoblastic differentiation markers, pro-α1(I) collagen (col1A1), Bone Sialoprotein (Bsp) and Osteocalcin (Ocn). Cultured ILK-deficient primary osteoblasts also showed increased cytoplasmic αNAC levels, and augmented mineralization with higher Runx2, Col1a1 and Bsp expression. Histomorphometric analysis of bones from mutant mice with ILK-deficient osteoblasts (Col1-Cre;Ilk(-/fl)) revealed transient changes, with increased bone volume in newborn animals that was corrected by two weeks of age. Our data suggest that the ILK-αNAC cascade acts to reduce the pace of osteoblast maturation. We propose that in vivo, functional redundancy is able to compensate for the loss of ILK activity, leading to the absence of an obvious phenotype when osteoblast-specific Ilk-deficient mice reach puberty.


Assuntos
Calcificação Fisiológica , Osteoblastos/enzimologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Células 3T3 , Animais , Técnicas de Silenciamento de Genes , Camundongos , RNA/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
20.
J Cell Biochem ; 115(5): 866-73, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24375853

RESUMO

The transcriptional coregulator αNAC (Nascent polypeptide associated complex And Coregulator alpha) and the transcriptional repressor FIAT (Factor Inhibiting ATF4-mediated Transcription) interact but the biological relevance of this interaction remains unclear. The activity of αNAC is extensively modulated by post-translational modifications (PTMs). We identified a novel αNAC PTM through covalent attachment of the Small Ubiquitin-like MOdifier (SUMO1). Recombinant αNAC was a SUMO1 target in in vitro SUMOylation assays and we confirmed that αNAC is conjugated to SUMO1 in cultured osteoblasts and in calvarial tissue. The amino acid sequence of αNAC contains one copy of the composite "phospho-sumoyl switch" motif that couples sequential phosphorylation and SUMOylation. We found that αNAC is selectively SUMOylated at lysine residue 127 within the motif and that SUMOylation is enhanced when a phosphomimetic mutation is introduced at the nearby serine residue 132. SUMOylation did not alter the DNA-binding capacity of αNAC. The S132D, hyper-SUMOylated αNAC mutant specifically interacted with histone deacetylase-2 (HDAC2) and enhanced the inhibitory activity of FIAT on ATF4-mediated transcription from the Osteocalcin gene promoter. This effect required binding of SUMOylated αNAC to the target promoter. We propose that maximal transcriptional repression by FIAT requires its interaction with SUMOylated, HDAC2-interacting αNAC.


Assuntos
Proteínas Correpressoras/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas Nucleares/metabolismo , Sumoilação/genética , Transcrição Gênica , Animais , Proteínas Correpressoras/genética , Histona Desacetilase 2/metabolismo , Camundongos , Chaperonas Moleculares/genética , Proteínas Nucleares/biossíntese , Proteínas Nucleares/genética , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteocalcina/genética , Fosforilação/genética , Regiões Promotoras Genéticas , Processamento de Proteína Pós-Traducional/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA