Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 3377, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34099716

RESUMO

Animal models of human diseases are classically fed purified diets that contain casein as the unique protein source. We show that provision of a mixed protein source mirroring that found in the western diet exacerbates diet-induced obesity and insulin resistance by potentiating hepatic mTORC1/S6K1 signaling as compared to casein alone. These effects involve alterations in gut microbiota as shown by fecal microbiota transplantation studies. The detrimental impact of the mixed protein source is also linked with early changes in microbial production of branched-chain fatty acids (BCFA) and elevated plasma and hepatic acylcarnitines, indicative of aberrant mitochondrial fatty acid oxidation. We further show that the BCFA, isobutyric and isovaleric acid, increase glucose production and activate mTORC1/S6K1 in hepatocytes. Our findings demonstrate that alteration of dietary protein source exerts a rapid and robust impact on gut microbiota and BCFA with significant consequences for the development of obesity and insulin resistance.


Assuntos
Proteínas Alimentares/efeitos adversos , Ácidos Graxos/metabolismo , Microbioma Gastrointestinal/fisiologia , Resistência à Insulina , Obesidade/etiologia , Ração Animal/efeitos adversos , Animais , Linhagem Celular Tumoral , Dieta Hiperlipídica/efeitos adversos , Dieta Ocidental/efeitos adversos , Sacarose Alimentar/efeitos adversos , Modelos Animais de Doenças , Transplante de Microbiota Fecal , Vida Livre de Germes , Gluconeogênese , Hepatócitos , Humanos , Fígado/metabolismo , Fígado/patologia , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Obesidade/metabolismo , Obesidade/patologia , Ratos , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Transdução de Sinais
2.
FASEB J ; 35(5): e21559, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33835594

RESUMO

Diabetic nephropathy (DN) remains the major cause of end-stage renal disease (ESRD). We used high-fat/high-sucrose (HFHS)-fed LDLr-/- /ApoB100/100 mice with transgenic overexpression of IGFII in pancreatic ß-cells (LRKOB100/IGFII) as a model of ESRD to test whether dietary long chain omega-3 polyunsaturated fatty acids LCω3FA-rich fish oil (FO) could prevent ESRD development. We further evaluated the potential of docosahexaenoic acid (DHA)-derived pro-resolving lipid mediators, 17-hydroxy-DHA (17-HDHA) and Protectin DX (PDX), to reverse established ESRD damage. HFHS-fed vehicle-treated LRKOB100/IGFII mice developed severe kidney dysfunction leading to ESRD, as revealed by advanced glomerular fibrosis and mesangial expansion along with reduced percent survival. The kidney failure outcome was associated with cardiac dysfunction, revealed by reduced heart rate and prolonged diastolic and systolic time. Dietary FO prevented kidney damage, lean mass loss, cardiac dysfunction, and death. 17-HDHA reduced podocyte foot process effacement while PDX treatment alleviated kidney fibrosis and mesangial expansion as compared to vehicle treatment. Only PDX therapy was effective at preserving the heart function and survival rate. These results show that dietary LCω3FA intake can prevent ESRD and cardiac dysfunction in LRKOB100/IGFII diabetic mice. Our data further reveals that PDX can protect against renal failure and cardiac dysfunction, offering a potential new therapeutic strategy against ESRD.


Assuntos
Aterosclerose/complicações , Diabetes Mellitus Experimental/fisiopatologia , Nefropatias Diabéticas/tratamento farmacológico , Modelos Animais de Doenças , Ácidos Docosa-Hexaenoicos/administração & dosagem , Óleos de Peixe/administração & dosagem , Falência Renal Crônica/tratamento farmacológico , Animais , Apolipoproteína B-100/fisiologia , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/patologia , Falência Renal Crônica/etiologia , Falência Renal Crônica/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de LDL/fisiologia
3.
Food Chem Toxicol ; 146: 111832, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33129933

RESUMO

The dramatic rise in the global occurrence of obesity and associated diseases calls for new strategies to promote weight loss. However, while the beneficial effects of weight loss are well known, rapid loss of fat mass can also lead to the endogenous release of liposoluble molecules with potential harmful effects, such as persistent organic pollutants (POP). The aim of this study was to evaluate the impact of a polyphenol-rich cranberry extract (CE) on POP release and their potential deleterious effects during weight loss of obese mice. C57BL/6 J mice were fed an obesogenic diet with or without a mixture of POP for 12 weeks and then changed to a low-fat diet to induce weight loss and endogenous POP release. The POP-exposed mice were then separated in two groups during weight loss, receiving either CE or the vehicle. Unexpectedly, despite the higher fat loss in the CE-treated group, the circulating levels of POP were not enhanced in these mice. Moreover, glucose homeostasis was further improved during CE-induced weight loss, as revealed by lower fasting glycemia and improved glucose tolerance as compared to vehicle-treated mice. Interestingly, the CE extract also induced changes in the gut microbiota after weight loss in POP-exposed mice, including blooming of Parvibacter, a member of the Coriobacteriaceae family which has been predicted to play a role in xenobiotic metabolism. Our data thus suggests that the gut microbiota can be targeted by polyphenol-rich extracts to protect from increased POP exposure and their detrimental metabolic effects during rapid weight loss.


Assuntos
Obesidade/induzido quimicamente , Compostos Orgânicos/toxicidade , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , Vaccinium macrocarpon/química , Redução de Peso , Animais , Bactérias/genética , Gorduras na Dieta/administração & dosagem , Poluentes Ambientais , Contaminação de Alimentos , Microbioma Gastrointestinal/efeitos dos fármacos , Masculino , Camundongos , Extratos Vegetais/química , Polifenóis/química , RNA Bacteriano/genética , RNA Ribossômico 16S/genética
4.
Am J Physiol Endocrinol Metab ; 318(6): E965-E980, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32228321

RESUMO

Blueberry consumption can prevent obesity-linked metabolic diseases, and it has been proposed that the polyphenol content of blueberries may contribute to these effects. Polyphenols have been shown to favorably impact metabolic health, but the role of specific polyphenol classes and whether the gut microbiota is linked to these effects remain unclear. We aimed to evaluate the impact of whole blueberry powder and blueberry polyphenols on the development of obesity and insulin resistance and to determine the potential role of gut microbes in these effects by using fecal microbiota transplantation (FMT). Sixty-eight C57BL/6 male mice were assigned to one of the following diets for 12 wk: balanced diet (Chow); high-fat, high-sucrose diet (HFHS); or HFHS supplemented with whole blueberry powder (BB), anthocyanidin (ANT)-rich extract, or proanthocyanidin (PAC)-rich extract. After 8 wk, mice were housed in metabolic cages, and an oral glucose tolerance test (OGTT) was performed. Sixty germ-free mice fed HFHS diet received FMT from one of the above groups biweekly for 8 wk, followed by an OGTT. PAC-treated mice were leaner than HFHS controls although they had the same energy intake and were more physically active. This observation was reproduced in germ-free mice receiving FMT from PAC-treated mice. PAC- and ANT-treated mice showed improved insulin responses during OGTT, and this finding was also reproduced in germ-free mice following FMT. These results show that blueberry PAC and ANT polyphenols can reduce diet-induced body weight and improve insulin sensitivity and that at least part of these beneficial effects are explained by modulation of the gut microbiota.


Assuntos
Antocianinas/farmacologia , Mirtilos Azuis (Planta) , Frutas , Microbioma Gastrointestinal/efeitos dos fármacos , Resistência à Insulina , Obesidade/metabolismo , Extratos Vegetais/farmacologia , Proantocianidinas/farmacologia , Animais , Peso Corporal/efeitos dos fármacos , Dieta Hiperlipídica , Sacarose Alimentar , Transplante de Microbiota Fecal , Teste de Tolerância a Glucose , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/microbiologia
5.
Diabetologia ; 61(4): 919-931, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29270816

RESUMO

AIMS/HYPOTHESIS: There is growing evidence that fruit polyphenols exert beneficial effects on the metabolic syndrome, but the underlying mechanisms remain poorly understood. In the present study, we aimed to analyse the effects of polyphenolic extracts from five types of Arctic berries in a model of diet-induced obesity. METHODS: Male C57BL/6 J mice were fed a high-fat/high-sucrose (HFHS) diet and orally treated with extracts of bog blueberry (BBE), cloudberry (CLE), crowberry (CRE), alpine bearberry (ABE), lingonberry (LGE) or vehicle (HFHS) for 8 weeks. An additional group of standard-chow-fed, vehicle-treated mice was included as a reference control for diet-induced obesity. OGTTs and insulin tolerance tests were conducted, and both plasma insulin and C-peptide were assessed throughout the OGTT. Quantitative PCR, western blot analysis and ELISAs were used to assess enterohepatic immunometabolic features. Faecal DNA was extracted and 16S rRNA gene-based analysis was used to profile the gut microbiota. RESULTS: Treatment with CLE, ABE and LGE, but not with BBE or CRE, prevented both fasting hyperinsulinaemia (mean ± SEM [pmol/l]: chow 67.2 ± 12.3, HFHS 153.9 ± 19.3, BBE 114.4 ± 14.3, CLE 82.5 ± 13.0, CRE 152.3 ± 24.4, ABE 90.6 ± 18.0, LGE 95.4 ± 10.5) and postprandial hyperinsulinaemia (mean ± SEM AUC [pmol/l × min]: chow 14.3 ± 1.4, HFHS 31.4 ± 3.1, BBE 27.2 ± 4.0, CLE 17.7 ± 2.2, CRE 32.6 ± 6.3, ABE 22.7 ± 18.0, LGE 23.9 ± 2.5). None of the berry extracts affected C-peptide levels or body weight gain. Levels of hepatic serine phosphorylated Akt were 1.6-, 1.5- and 1.2-fold higher with CLE, ABE and LGE treatment, respectively, and hepatic carcinoembryonic antigen-related cell adhesion molecule (CEACAM)-1 tyrosine phosphorylation was 0.6-, 0.7- and 0.9-fold increased in these mice vs vehicle-treated, HFHS-fed mice. These changes were associated with reduced liver triacylglycerol deposition, lower circulating endotoxins, alleviated hepatic and intestinal inflammation, and major gut microbial alterations (e.g. bloom of Akkermansia muciniphila, Turicibacter and Oscillibacter) in CLE-, ABE- and LGE-treated mice. CONCLUSIONS/INTERPRETATION: Our findings reveal novel mechanisms by which polyphenolic extracts from ABE, LGE and especially CLE target the gut-liver axis to protect diet-induced obese mice against metabolic endotoxaemia, insulin resistance and hepatic steatosis, which importantly improves hepatic insulin clearance. These results support the potential benefits of these Arctic berries and their integration into health programmes to help attenuate obesity-related chronic inflammation and metabolic disorders. DATA AVAILABILITY: All raw sequences have been deposited in the public European Nucleotide Archive server under accession number PRJEB19783 ( https://www.ebi.ac.uk/ena/data/view/PRJEB19783 ).


Assuntos
Fígado Gorduroso/tratamento farmacológico , Fígado Gorduroso/metabolismo , Resistência à Insulina , Intestinos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Extratos Vegetais/farmacologia , Animais , Peptídeo C/sangue , Dieta Hiperlipídica , Endotoxemia/metabolismo , Frutas/química , Glucose/metabolismo , Homeostase , Insulina/sangue , Insulina/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/metabolismo , RNA Ribossômico 16S/genética , Fatores de Tempo
6.
Diabetes Obes Metab ; 19(3): 313-319, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27800648

RESUMO

AIMS: To compare the therapeutic potential of TP-113, a unique molecular entity linking DHA with metformin, for alleviating insulin resistance in obese diabetic mice through the PDX/IL-6 pathway. MATERIAL AND METHODS: We utilized the generically obese diabetic db/db mouse model for all experiments. Initial studies investigated both a dose and time course response. These results were then utilized to design a long-term (5 week) treatment protocol. Mice were gavaged twice daily with 1 of 3 treatments: 200 mg/kg BW TP113, an equivalent dose of metformin alone (70 mg/kg BW) or water. Whole-body insulin sensitivity was measured using the hyperinsulinaemic-isoglycaemic clamp procedure in awake unrestrained mice. RESULTS: We first confirmed that acute TP-113 treatment raises PDX and IL-6 levels in skeletal muscle. We next tested the long-term glucoregulatory effect of oral TP-113 in obese diabetic db/db mice and compared its effect to an equivalent dose of metformin. A 5-week oral treatment with TP-113 reduced insulin resistance compared to both vehicle treatment and metformin alone, revealed by the determination of whole-body insulin sensitivity for glucose disposal using the clamp technique. This insulin-sensitizing effect was explained primarily by improvement of insulin action to suppress hepatic glucose production in TP-113-treated mice. These effects of TP-113 were greater than that of an equivalent dose of metformin, indicating that TP-113 increases metformin efficacy for reducing insulin resistance. CONCLUSION: We conclude that TP-113 improves insulin sensitivity in obese diabetic mice through activation of the PDX/IL-6 signaling axis in skeletal muscle and improved glucoregulatory action in the liver.


Assuntos
Glicemia/efeitos dos fármacos , Diabetes Mellitus Tipo 2/metabolismo , Ácidos Docosa-Hexaenoicos/metabolismo , Ácidos Docosa-Hexaenoicos/farmacologia , Glutamatos/farmacologia , Hipoglicemiantes/farmacologia , Resistência à Insulina , Interleucina-6/metabolismo , Fígado/efeitos dos fármacos , Metformina/farmacologia , Músculo Esquelético/efeitos dos fármacos , Obesidade/metabolismo , Animais , Glicemia/metabolismo , Modelos Animais de Doenças , Combinação de Medicamentos , Glucose/metabolismo , Técnica Clamp de Glucose , Fígado/metabolismo , Camundongos , Camundongos Obesos , Músculo Esquelético/metabolismo
7.
Diabetologia ; 59(3): 592-603, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26733005

RESUMO

AIMS/HYPOTHESIS: The mammalian target of rapamycin complex 1 (mTORC1)/p70 ribosomal S6 kinase (S6K)1 pathway is overactivated in obesity, leading to inhibition of phosphoinositide 3-kinase (PI3K)/Akt signalling and insulin resistance. However, chronic mTORC1 inhibition by rapamycin impairs glucose homeostasis because of robust induction of liver gluconeogenesis. Here, we compared the effect of rapamycin with that of the selective S6K1 inhibitor, PF-4708671, on glucose metabolism in vitro and in vivo. METHODS: We used L6 myocytes and FAO hepatocytes to explore the effect of PF-4708671 on the regulation of glucose uptake, glucose production and insulin signalling. We also treated high-fat (HF)-fed obese mice for 7 days with PF-4708671 in comparison with rapamycin to assess glucose tolerance, insulin resistance and insulin signalling in vivo. RESULTS: Chronic rapamycin treatment induced insulin resistance and impaired glucose metabolism in hepatic and muscle cells. Conversely, chronic S6K1 inhibition with PF-4708671 reduced glucose production in hepatocytes and enhanced glucose uptake in myocytes. Whereas rapamycin treatment inhibited Akt phosphorylation, PF-4708671 increased Akt phosphorylation in both cell lines. These opposite effects of the mTORC1 and S6K1 inhibitors were also observed in vivo. Indeed, while rapamycin treatment induced glucose intolerance and failed to improve Akt phosphorylation in liver and muscle of HF-fed mice, PF-4708671 treatment improved glucose tolerance and increased Akt phosphorylation in metabolic tissues of these obese mice. CONCLUSIONS/INTERPRETATION: Chronic S6K1 inhibition by PF-4708671 improves glucose homeostasis in obese mice through enhanced Akt activation in liver and muscle. Our results suggest that specific S6K1 blockade is a valid pharmacological approach to improve glucose disposal in obese diabetic individuals.


Assuntos
Glucose/metabolismo , Obesidade/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Quinases S6 Ribossômicas/metabolismo , Animais , Metabolismo dos Carboidratos/efeitos dos fármacos , Linhagem Celular , Imidazóis/farmacologia , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos Obesos , Complexos Multiproteicos/metabolismo , Obesidade/etiologia , Piperazinas/farmacologia , Ratos , Proteínas Quinases S6 Ribossômicas/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismo
8.
Nat Med ; 20(6): 664-9, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24813250

RESUMO

We previously demonstrated that low biosynthesis of ω-3 fatty acid-derived proresolution mediators, termed protectins, is associated with an impaired global resolution capacity, inflammation and insulin resistance in obese high-fat diet-fed mice. These findings prompted a more direct study of the therapeutic potential of protectins for the treatment of metabolic disorders. Herein we show that protectin DX (PDX) exerts an unanticipated glucoregulatory activity that is distinct from its anti-inflammatory actions. We found that PDX selectively stimulated the release of the prototypic myokine interleukin-6 (IL-6) from skeletal muscle and thereby initiated a myokine-liver signaling axis, which blunted hepatic glucose production via signal transducer and activator of transcription 3 (STAT3)-mediated transcriptional suppression of the gluconeogenic program. These effects of PDX were abrogated in Il6-null mice. PDX also activated AMP-activated protein kinase (AMPK); however, it did so in an IL-6-independent manner. Notably, we demonstrated that administration of PDX to obese diabetic db/db mice raises skeletal muscle IL-6 levels and substantially improves their insulin sensitivity without any impact on adipose tissue inflammation. Our findings thus support the development of PDX-based selective muscle IL-6 secretagogues as a new class of therapy for the treatment of insulin resistance and type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Ácidos Docosa-Hexaenoicos/farmacologia , Resistência à Insulina/fisiologia , Interleucina-6/metabolismo , Fígado/metabolismo , Músculo Esquelético/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Etanol/administração & dosagem , Técnica Clamp de Glucose , Lipídeos/administração & dosagem , Camundongos , Camundongos Endogâmicos C57BL
9.
Diabetes ; 60(5): 1446-57, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21471511

RESUMO

OBJECTIVE: Increased plasma concentrations of apolipoprotein B100 often present in patients with insulin resistance and confer increased risk for the development of atherosclerosis. Naturally occurring polyphenolic compounds including flavonoids have antiatherogenic properties. The aim of the current study was to evaluate the effect of the polymethoxylated flavonoid nobiletin on lipoprotein secretion in cultured human hepatoma cells (HepG2) and in a mouse model of insulin resistance and atherosclerosis. RESEARCH DESIGN AND METHODS: Lipoprotein secretion was determined in HepG2 cells incubated with nobiletin or insulin. mRNA abundance was evaluated by quantitative real-time PCR, and Western blotting was used to demonstrate activation of cell signaling pathways. In LDL receptor-deficient mice (Ldlr(-/-)) fed a Western diet supplemented with nobiletin, metabolic parameters, gene expression, fatty acid oxidation, glucose homeostasis, and energy expenditure were documented. Atherosclerosis was quantitated by histological analysis. RESULTS: In HepG2 cells, activation of mitogen-activated protein kinase-extracellular signal-related kinase signaling by nobiletin or insulin increased LDLR and decreased MTP and DGAT1/2 mRNA, resulting in marked inhibition of apoB100 secretion. Nobiletin, unlike insulin, did not induce phosphorylation of the insulin receptor or insulin receptor substrate-1 and did not stimulate lipogenesis. In fat-fed Ldlr(-/-) mice, nobiletin attenuated dyslipidemia through a reduction in VLDL-triglyceride (TG) secretion. Nobiletin prevented hepatic TG accumulation, increased expression of Pgc1α and Cpt1α, and enhanced fatty acid ß-oxidation. Nobiletin did not activate any peroxisome proliferator-activated receptor (PPAR), indicating that the metabolic effects were PPAR independent. Nobiletin increased hepatic and peripheral insulin sensitivity and glucose tolerance and dramatically attenuated atherosclerosis in the aortic sinus. CONCLUSIONS: Nobiletin provides insight into treatments for dyslipidemia and atherosclerosis associated with insulin-resistant states.


Assuntos
Aterosclerose/tratamento farmacológico , Dieta/efeitos adversos , Dislipidemias/tratamento farmacológico , Flavonas/uso terapêutico , Resistência à Insulina/fisiologia , Lipoproteínas VLDL/metabolismo , Triglicerídeos/metabolismo , Animais , Aterosclerose/metabolismo , Butadienos/farmacologia , Dislipidemias/metabolismo , Eletroforese em Gel de Poliacrilamida , Metabolismo Energético/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Células Hep G2 , Humanos , Insulina/farmacologia , Proteínas Substratos do Receptor de Insulina/metabolismo , MAP Quinase Quinase 1/antagonistas & inibidores , MAP Quinase Quinase 1/metabolismo , MAP Quinase Quinase 2/antagonistas & inibidores , MAP Quinase Quinase 2/metabolismo , Masculino , Camundongos , Camundongos Mutantes , Nitrilas/farmacologia , Fosforilação/efeitos dos fármacos , Receptor de Insulina/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos
10.
Obesity (Silver Spring) ; 14(5): 787-93, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16855187

RESUMO

OBJECTIVE: Assess whether changes in permeability of the muscle regional microcirculation occur in the obese Zucker rat model. RESEARCH METHODS AND PROCEDURES: Capillary permeability to albumin was assessed in vivo in Zucker rats (n = 15) and lean controls (n = 15) by quantifying the extravasation of albumin-bound Evans Blue (EB) in different organs. Unanaesthetized animals were injected with EB 20 mg/kg in the caudal vein, and EB was extracted by formamide from selected organs collected after exsanguination. RESULTS: Relative to control animals, Zucker rats had higher body weight (Delta = +33%; p < 0.001), plasma triglycerides (Delta = +244%; p < 0.001), and insulin (Delta = +240%; p < 0.001) concentrations. Plasma glucose concentrations were not different between the two groups (p = not significant). Using the EB technique, we showed a 30% to 50% (p < 0.01) increase in the extravasation of EB in the obese rats, regardless of the skeletal muscle group studied. This increase in skeletal muscle vasopermeability was not paralleled by any increase in the expression of the muscle endothelium-nitric oxide (NO) system because the total NO synthase (NOS) activity in skeletal muscle of the obese Zucker rat was significantly lower (p < 0.001), as was the endothelial NOS immunoreactive mass (p < 0.001), compared with lean controls. DISCUSSION: In conclusion, there seems to be dissociation between capillary permeability and local regulation of microcirculation in skeletal muscles of the obese Zucker rat. It is suggested that the increase in skeletal muscle vasopermeability (extravasation of macromolecules) is a compensation for the loss of NO-dependent vasodilation and capillary recruitment noted in this model of obesity and insulin resistance.


Assuntos
Albuminas/farmacocinética , Permeabilidade Capilar/fisiologia , Músculo Esquelético/metabolismo , Obesidade/fisiopatologia , Albuminas/química , Animais , Glicemia/metabolismo , Peso Corporal/fisiologia , Modelos Animais de Doenças , Azul Evans/química , Azul Evans/farmacocinética , Extravasamento de Materiais Terapêuticos e Diagnósticos/fisiopatologia , Imuno-Histoquímica , Insulina/sangue , Masculino , Músculo Esquelético/irrigação sanguínea , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/metabolismo , Nitritos/sangue , Obesidade/sangue , Ratos , Ratos Zucker , Triglicerídeos/sangue , Fator A de Crescimento do Endotélio Vascular/sangue , Fator A de Crescimento do Endotélio Vascular/metabolismo
11.
Biochem Pharmacol ; 67(10): 1997-2004, 2004 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-15130775

RESUMO

Reduced extravasation of macromolecules in skeletal muscle has recently been documented in the fructose-fed rat model, corroborating a hypothesis that a functional obliteration of muscle regional microcirculation might lead to hypertension and restrict access of nutrients and hormones to their target cells. The goal of this study was to assess the impact of a treatment with rosiglitazone on the reduced muscle vasopermeability observed previously in the fructose-fed rat model. Fructose-fed Sprague-Dawley rats were gavaged with rosiglitazone (10 micromol kg(-1) per day; n = 21) or the vehicle only (n = 19) for 3 consecutive weeks before assessing the extravasation of Evans Blue (EB) dye in vivo in distinct muscle groups. Relative to control group, rosiglitazone reduced mean arterial blood pressure (Delta = -16.7%, P < 0.001), plasma insulin (Delta= -39.1%, P < 0.05) and plasma triglyceride (Delta= -32.8 %, P < 0.01) concentrations in a significant manner. Plasma VEGF concentrations were significantly lower in the rosiglitazone-treated animals compared to the control animals (32.7 +/- 0.8 pg ml(-1) versus 46.1 +/- 1.2 pg ml(-1), P < 0.001). While no changes were observed in the lungs or the kidneys, fructose-fed rats treated with rosiglitazone had a 30-50% increase (P < 0.005) in the extravasation of EB regardless of the skeletal muscle group studied (rectus femoris, soleus, gastrocnemius lateralis, vastus lateralis and tibialis cranalis). In homogenates of skeletal muscles (vastus lateralis) of fructose-fed rats, rosiglitazone resulted in a significant increase in NO synthase (NOS) activity (Delta = +41.9 %, P < 0.003) as well as endothelial NOS immunoreactive mass (Delta = +37.8 %, P < 0.01) compared to the control animals. There was no change in the immunoreactive level of the nNOS isoform, the most abundant muscle isoform, or in the immunoreactive levels of VEGF. In conclusion, rosiglitazone appears to restore a vascular dysfunction previously documented in the skeletal muscle microcirculation, as evidenced by improved skeletal muscle vasopermeability and upregulation of the muscle endothelium-NO system in the fructose-fed rat model. These effects on muscle per se might also result in a partial improvement of the insulin resistance phenomenon by improving the distribution of nutrients and insulin to skeletal muscle. This effect appears to be independent of circulating levels of VEGF since changes in plasma concentrations of this permeability factor were lower in the rosiglitazone-treated group.


Assuntos
Frutose/farmacologia , Hipoglicemiantes/farmacologia , Músculo Esquelético/efeitos dos fármacos , Óxido Nítrico Sintase/metabolismo , Tiazolidinedionas/farmacologia , Animais , Peso Corporal/efeitos dos fármacos , Permeabilidade Capilar/efeitos dos fármacos , Permeabilidade Capilar/imunologia , Carboidratos da Dieta , Interações Medicamentosas , Masculino , Músculo Esquelético/enzimologia , Óxido Nítrico Sintase/imunologia , Óxido Nítrico Sintase Tipo III , Ratos , Ratos Sprague-Dawley , Rosiglitazona , Fator A de Crescimento do Endotélio Vascular/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA