Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Acta Neuropathol ; 138(1): 49-65, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30945056

RESUMO

The hexanucleotide repeat expansion GGGGCC (G4C2)n in the C9orf72 gene is the most common genetic abnormality associated with amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Recent findings suggest that dysfunction of nuclear-cytoplasmic trafficking could affect the transport of RNA binding proteins in C9orf72 ALS/FTD. Here, we provide evidence that the RNA editing enzyme adenosine deaminase acting on RNA 2 (ADAR2) is mislocalized in C9orf72 repeat expansion mediated ALS/FTD. ADAR2 is responsible for adenosine (A) to inosine (I) editing of double-stranded RNA, and its function has been shown to be essential for survival. Here we show the mislocalization of ADAR2 in human induced pluripotent stem cell-derived motor neurons (hiPSC-MNs) from C9orf72 patients, in mice expressing (G4C2)149, and in C9orf72 ALS/FTD patient postmortem tissue. As a consequence of this mislocalization we observe alterations in RNA editing in our model systems and across multiple brain regions. Analysis of editing at 408,580 known RNA editing sites indicates that there are vast RNA A to I editing aberrations in C9orf72-mediated ALS/FTD. These RNA editing aberrations are found in many cellular pathways, such as the ALS pathway and the crucial EIF2 signaling pathway. Our findings suggest that the mislocalization of ADAR2 in C9orf72 mediated ALS/FTD is responsible for the alteration of RNA processing events that may impact vast cellular functions, including the integrated stress response (ISR) and protein translation.


Assuntos
Adenosina Desaminase/genética , Proteína C9orf72/genética , Edição de RNA/genética , Proteínas de Ligação a RNA/genética , Esclerose Lateral Amiotrófica/genética , Animais , Expansão das Repetições de DNA/genética , Demência Frontotemporal/genética , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos Transgênicos , Doença de Pick/genética
2.
Hum Mol Genet ; 25(16): 3491-3499, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27378687

RESUMO

Amyotrophic lateral sclerosis (ALS) is a devastating progressive neurodegenerative disease characterized by the selective death of motor neurons. Disease pathophysiology is complex and not yet fully understood. Higher gene expression of the inositol 1,4,5-trisphosphate receptor 2 gene (ITPR2), encoding the IP3 receptor 2 (IP3R2), was detected in sporadic ALS patients. Here, we demonstrate that IP3R2 gene expression was also increased in spinal cords of ALS mice. Moreover, an increase of IP3R2 expression was observed in other models of chronic and acute neurodegeneration. Upregulation of IP3R2 gene expression could be induced by lipopolysaccharide (LPS) in murine astrocytes, murine macrophages and human fibroblasts indicating that it may be a compensatory response to inflammation. Preventing this response by genetic deletion of ITPR2 from SOD1G93A mice had a dose-dependent effect on disease duration, resulting in a significantly shorter lifespan of these mice. In addition, the absence of IP3R2 led to increased innate immunity, which may contribute to the decreased survival of the SOD1G93A mice. Besides systemic inflammation, IP3R2 knockout mice also had increased IFNγ, IL-6 and IL1α expression. Altogether, our data indicate that IP3R2 protects against the negative effects of inflammation, suggesting that the increase in IP3R2 expression in ALS patients is a protective response.


Assuntos
Esclerose Lateral Amiotrófica/genética , Inflamação/genética , Receptores de Inositol 1,4,5-Trifosfato/genética , Superóxido Dismutase-1/genética , Esclerose Lateral Amiotrófica/patologia , Animais , Modelos Animais de Doenças , Humanos , Inflamação/patologia , Interferon gama/biossíntese , Interleucina-1beta/biossíntese , Interleucina-6/biossíntese , Lipopolissacarídeos , Masculino , Camundongos , Camundongos Knockout , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Medula Espinal/metabolismo , Medula Espinal/patologia
3.
J Dermatol Sci ; 83(2): 131-7, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27245865

RESUMO

BACKGROUND: Dupuytren's Disease is a common disorder of the connective tissue characterized by progressive and irreversible fibroblastic proliferation affecting the palmar fascia. Progressive flexion deformity appears over several months or years and although usually painless, it can result in a serious handicap causing loss of manual dexterity. There is no cure for the disease and the etiology is largely unknown. A genome-wide association study of Dupuytren's Disease identified nine susceptibility loci with the strongest genetic signal located in an intron of EPDR1, the gene encoding the Ependymin Related 1 protein. OBJECTIVE: Here, we investigate the role of EPDR1 in Dupuytren's Disease. METHODS: We research the role of EPDR1 by assessing gene expression in patient tissue and by gene silencing in fibroblast-populated collagen lattice (FPCL) assay, which is used as an in vitro model of Dupuytren's contractures. RESULTS: The three alternative transcripts produced by the EPDR1 gene are all detected in affected Dupuytren's tissue and control unaffected palmar fascia tissue. Dupuytren's tissue also contracts more in the FPCL paradigm. Dicer-substrate RNA-mediated knockdown of EPDR1 results in moderate late stage attenuation of contraction rate in FPCL, implying a role in matrix contraction. CONCLUSION: Our results suggest functional involvement of EPDR1 in the etiology of Dupuytren's Disease.


Assuntos
Contratura de Dupuytren/genética , Contratura de Dupuytren/metabolismo , Contração Muscular/genética , Miofibroblastos/fisiologia , Proteínas de Neoplasias/metabolismo , Células Cultivadas , Colágeno/metabolismo , Fáscia/metabolismo , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Miofibroblastos/metabolismo , Proteínas de Neoplasias/genética , Proteínas do Tecido Nervoso , Polimorfismo de Nucleotídeo Único , Cultura Primária de Células , Interferência de RNA
4.
Neurobiol Dis ; 60: 11-7, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23969236

RESUMO

Amyotrophic Lateral Sclerosis (ALS) is a devastating progressive neurodegenerative disease, resulting in selective motor neuron degeneration and paralysis. Patients die approximately 3-5 years after diagnosis. Disease pathophysiology is multifactorial, including excitotoxicity, but is not yet fully understood. Genetic analysis has proven fruitful in the past to further understand genes modulating the disease and increase knowledge of disease mechanisms. Here, we revisit a previously performed microsatellite analysis in ALS and focus on another hit, PLCD1, encoding phospholipase C delta 1 (PLCδ1), to investigate its role in ALS. PLCδ1 may contribute to excitotoxicity as it increases inositol 1,4,5-trisphosphate (IP3) formation, which releases calcium from the endoplasmic reticulum through IP3 receptors. We find that expression of PLCδ1 is increased in ALS mouse spinal cord and in neurons from ALS mice. Furthermore, genetic ablation of this protein in ALS mice significantly increases survival, but does not affect astrogliosis, microgliosis, aggregation or the amount of motor neurons at end stage compared to ALS mice with PLCδ1. Interestingly, genetic ablation of PLCδ1 prevents nuclear shrinkage of motor neurons in ALS mice at end stage. These results indicate that PLCD1 contributes to ALS and that PLCδ1 may be a new target for future studies.


Assuntos
Esclerose Lateral Amiotrófica/genética , Fosfolipase C delta/genética , Esclerose Lateral Amiotrófica/enzimologia , Esclerose Lateral Amiotrófica/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Neurônios/metabolismo , Neurônios/patologia , Fosfolipase C delta/metabolismo , Medula Espinal/metabolismo , Medula Espinal/patologia , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1 , Análise de Sobrevida
5.
Orphanet J Rare Dis ; 8: 79, 2013 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-23692804

RESUMO

BACKGROUND: Olmsted syndrome is a rare congenital skin disorder presenting with periorifical hyperkeratotic lesions and mutilating palmoplantar keratoderma, which is often associated with infections of the keratotic area. A recent study identified de novo mutations causing constitutive activation of TRPV3 as a cause of the keratotic manifestations of Olmsted syndrome. METHODS: Genetic, clinical and immunological profiling was performed on a case study patient with the clinical diagnosis of Olmsted syndrome. RESULTS: The patient was found to harbour a previously undescribed 1718G-C transversion in TRPV3, causing a G573A point mutation. In depth clinical and immunological analysis found multiple indicators of immune dysregulation, including frequent dermal infections, inflammatory infiltrate in the affected skin, hyper IgE production and elevated follicular T cells and eosinophils in the peripheral blood. CONCLUSIONS: These results provide the first comprehensive assessment of the immunological features of Olmsted syndrome. The systemic phenotype of hyper IgE and persistent eosinophilia suggest a primary or secondary role of immunological processes in the pathogenesis of Olmsted syndrome, and have important clinical consequences with regard to the treatment of Olmsted syndrome patients.


Assuntos
Ceratodermia Palmar e Plantar/imunologia , Ceratodermia Palmar e Plantar/fisiopatologia , Ceratose/imunologia , Ceratose/fisiopatologia , Adulto , Eosinofilia/genética , Eosinofilia/imunologia , Eosinofilia/fisiopatologia , Dermatoses Faciais/genética , Dermatoses Faciais/patologia , Feminino , Humanos , Hiperplasia/genética , Hiperplasia/imunologia , Hiperplasia/patologia , Imunoglobulina E/sangue , Imunoglobulina E/genética , Ceratodermia Palmar e Plantar/genética , Ceratose/genética , Masculino , Mutação , Fenótipo , Pele/patologia , Síndrome , Canais de Cátion TRPV/genética , Adulto Jovem
6.
Eur J Immunol ; 43(1): 75-84, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23041971

RESUMO

The autoimmune regulator (Aire), mediates central tolerance of peripheral self. Its activity in thymic epithelial cells (TECs) directs the ectopic expression of thousands of tissue-restricted antigens (TRAs), causing the deletion of autoreactive thymocytes. The molecular mechanisms orchestrating the breadth of transcriptional regulation by Aire remain unknown. One prominent model capable of explaining both the uniquely high number of Aire-dependent targets and their specificity posits that tissue-specific transcription factors induced by Aire directly activate their canonical targets, exponentially adding to the total number of Aire-dependent TRAs. To test this "Hierarchical Transcription" model, we analysed mice deficient in the pancreatic master transcription factor pancreatic and duodenal homeobox 1 (Pdx1), specifically in TECs (Pdx1(ΔFoxn1) ), for the expression and tolerance of pancreatic TRAs. Surprisingly, we found that lack of Pdx1 in TECs did not reduce the transcription of insulin or somatostatin, or alter glucagon expression. Moreover, in a model of thymic deletion driven by a neo-TRA under the control of the insulin promoter, Pdx1 in TECs was not required to affect thymocyte deletion or the generation of regulatory T (Treg) cells. These findings suggest that the capacity of Aire to regulate expression of a huge array of TRAs relies solely on an unconventional transcriptional mechanism, without intermediary transcription factors.


Assuntos
Tolerância Central , Proteínas de Homeodomínio/metabolismo , Pâncreas/imunologia , Linfócitos T/imunologia , Timo/imunologia , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Animais , Autoantígenos/genética , Autoantígenos/metabolismo , Autoimunidade , Células Cultivadas , Deleção Clonal/genética , Células Epiteliais/imunologia , Proteínas de Homeodomínio/genética , Insulina/genética , Insulina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Imunológicos , Especificidade de Órgãos , Regiões Promotoras Genéticas/genética , Transativadores/genética , Fatores de Transcrição/genética , Transcrição Gênica , Proteína AIRE
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA