Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Food Funct ; 10(6): 3421-3429, 2019 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-31134998

RESUMO

A Porphyra dioica protein extract was enzymatically hydrolysed and then fractionated using semi-preparative reverse-phase high performance chromatography. The hydrolysate and its fractions were tested for their oxygen radical absorbance capacity (ORAC) along with their angiotensin converting enzyme (ACE) and dipeptidyl peptidase IV (DPP-IV) inhibitory activities. The most potent fraction was analysed by liquid chromatography mass spectrometry. Eight peptide sequences were selected for synthesis based on their structure-activity criteria for bioactivity. Asp-Tyr-Tyr-Lys-Arg showed the highest ORAC activity (4.27 ± 0.15 µmol Trolox equivalent per µM). Thr-Tyr-Ile-Ala had the highest ACE inhibitory activity (IC50: 89.7 ± 7.10 µM). Tyr-Leu-Val-Ala was the only peptide showing DPP-IV inhibitory activity (IC50: 439 ± 44 µM). Apart from Asp-Tyr-Tyr-Lys-Arg and Thr-Tyr-Ile-Ala, which displayed increased ORAC activity, the bioactivities of the peptides were either maintained or decreased following in vitro simulated gastrointestinal digestion. The results indicate that P. dioica-derived peptides may have potential applications as health enhancing ingredients.


Assuntos
Inibidores da Enzima Conversora de Angiotensina/química , Antioxidantes/química , Inibidores da Dipeptidil Peptidase IV/química , Peptídeos/química , Porphyra/química , Hidrolisados de Proteína/química , Sequência de Aminoácidos , Inibidores da Enzima Conversora de Angiotensina/isolamento & purificação , Antioxidantes/isolamento & purificação , Dipeptidil Peptidase 4/química , Inibidores da Dipeptidil Peptidase IV/isolamento & purificação , Peptídeos/isolamento & purificação , Peptidil Dipeptidase A/química
2.
J Immunol ; 193(12): 6090-102, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25385819

RESUMO

Detection of microbes by TLRs on the plasma membrane leads to the induction of proinflammatory cytokines such as TNF-α, via activation of NF-κB. Alternatively, activation of endosomal TLRs leads to the induction of type I IFNs via IFN regulatory factors (IRFs). TLR4 signaling from the plasma membrane to NF-κB via the Toll/IL-1R (TIR) adaptor protein MyD88 requires the TIR sorting adaptor Mal, whereas endosomal TLR4 signaling to IRF3 via the TIR domain-containing adaptor-inducing IFN-ß (TRIF) requires the TRIF-related adaptor molecule (TRAM). Similar to TLR4 homodimers, TLR2 heterodimers can also induce both proinflammatory cytokines and type I IFNs. TLR2 plasma membrane signaling to NF-κB is known to require MyD88 and Mal, whereas endosomal IRF activation by TLR2 requires MyD88. However, it was unclear whether TLR2 requires a sorting adaptor for endosomal signaling, like TLR4 does. In this study, we show that TLR2-dependent IRF7 activation at the endosome is both Mal- and TRAM-dependent, and that TRAM is required for the TLR2-dependent movement of MyD88 to endosomes following ligand engagement. TRAM interacted with both TLR2 and MyD88, suggesting that TRAM can act as a bridging adapter between these two molecules. Furthermore, infection of macrophages lacking TRAM with herpes viruses or the bacterium Staphylococcus aureus led to impaired induction of type I IFN, indicating a role for TRAM in TLR2-dependent responses to human pathogens. Our work reveals that TRAM acts as a sorting adaptor not only for TLR4, but also for TLR2, to facilitate signaling to IRF7 at the endosome, which explains how TLR2 is capable of causing type I IFN induction.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Endossomos/metabolismo , Interferon Tipo I/biossíntese , Transdução de Sinais , Receptor 2 Toll-Like/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Linhagem Celular , Endocitose , Interações Hospedeiro-Patógeno , Humanos , Imunidade Inata , Fator Regulador 7 de Interferon/metabolismo , Interferon beta/biossíntese , Espaço Intracelular/metabolismo , Glicoproteínas de Membrana/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Peptídeos/farmacologia , Ligação Proteica , Transporte Proteico , Receptores de Interleucina-1/metabolismo , Receptor 2 Toll-Like/antagonistas & inibidores , Receptor 2 Toll-Like/genética , Receptor 4 Toll-Like/química , Receptor 4 Toll-Like/metabolismo
3.
J Leukoc Biol ; 96(3): 427-36, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24812060

RESUMO

TLRs act as sentinels in professional immune cells to detect and initiate the innate immune response to pathogen challenge. TLR4 is a widely expressed TLR, responsible for initiating potent immune responses to LPS. TRAM acts to bridge TLR4 with TRIF, orchestrating the inflammatory response to pathogen challenge. We have identified a putative TRAF6-binding motif in TRAM that could mediate a novel signaling function for TRAM in TLR4 signaling. TRAM and TRAF6 association was confirmed by immunoprecipitation of endogenous, ectopically expressed and recombinant proteins, which was ablated upon mutation of a key Glu residue in TRAM (TRAM E183A). TRAF6 and TRAM were observed colocalizing using confocal microscopy following ectopic expression in cells and the ability of TRAM and TRAM E183A to activate luciferase-linked reporter assays was determined in HEK293 and TRAF6-deficient cells. Importantly, TRAM-deficient macrophages reconstituted with TRAM E183A display significantly reduced inflammatory TNF-α, IL-6, and RANTES protein production compared with WT TRAM. These results demonstrate a novel role for TRAM in TLR4-mediated signaling in regulating inflammatory responses via its interaction with TRAF6, distinct from its role as a bridging adaptor between TLR4 and TRIF.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Inflamação/fisiopatologia , Fator 6 Associado a Receptor de TNF/fisiologia , Receptor 4 Toll-Like/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transporte Vesicular/antagonistas & inibidores , Proteínas Adaptadoras de Transporte Vesicular/genética , Motivos de Aminoácidos , Animais , Células Cultivadas , Citocinas/biossíntese , Fibroblastos , Genes Reporter , Células HEK293 , Humanos , Imunoprecipitação , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Microscopia Confocal , Mutação de Sentido Incorreto , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Mutação Puntual , Mapeamento de Interação de Proteínas , RNA Interferente Pequeno/farmacologia , Receptores de Interleucina/deficiência , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais/fisiologia , Fator 6 Associado a Receptor de TNF/química , Fator 6 Associado a Receptor de TNF/deficiência , Fator 6 Associado a Receptor de TNF/genética
4.
J Biol Chem ; 288(47): 33642-33653, 2013 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-24114841

RESUMO

Vaccinia virus encodes a number of proteins that inhibit and manipulate innate immune signaling pathways that also have a role in virulence. These include A52, a protein shown to inhibit IL-1- and Toll-like receptor-stimulated NFκB activation, via interaction with interleukin-1 receptor-associated kinase 2 (IRAK2). Interestingly, A52 was also found to activate p38 MAPK and thus enhance Toll-like receptor-dependent IL-10 induction, which was TRAF6-dependent, but the manner in which A52 manipulates TRAF6 to stimulate p38 activation was unclear. Here, we show that A52 has a non-canonical TRAF6-binding motif that is essential for TRAF6 binding and p38 activation but dispensable for NFκB inhibition and IRAK2 interaction. Wild-type A52, but not a mutant defective in p38 activation and TRAF6 binding (F154A), caused TRAF6 oligomerization and subsequent TRAF6-TAK1 association. The crystal structure of A52 shows that it adopts a Bcl2-like fold and exists as a dimer in solution. Residue Met-65 was identified as being located in the A52 dimer interface, and consistent with that, A52-M65E was impaired in its ability to dimerize. A52-M65E although capable of interacting with TRAF6, was unable to cause either TRAF6 self-association, induce the TRAF6-TAK1 association, or activate p38 MAPK. The results suggest that an A52 dimer causes TRAF6 self-association, leading to TAK1 recruitment and p38 activation. This reveals a molecular mechanism whereby poxviruses manipulate TRAF6 to activate MAPKs (which can be proviral) without stimulating antiviral NFκB activation.


Assuntos
MAP Quinase Quinase Quinases/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismo , Vaccinia virus/metabolismo , Vacínia/metabolismo , Proteínas Virais/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Substituição de Aminoácidos , Animais , Ativação Enzimática , Células HEK293 , Humanos , Quinases Associadas a Receptores de Interleucina-1/genética , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Interleucina-10/genética , Interleucina-10/metabolismo , MAP Quinase Quinase Quinases/genética , Camundongos , Camundongos Knockout , Mutação de Sentido Incorreto , Ligação Proteica , Multimerização Proteica , Fator 6 Associado a Receptor de TNF/genética , Vacínia/genética , Vaccinia virus/genética , Proteínas Virais/genética , Proteínas Quinases p38 Ativadas por Mitógeno/genética
5.
Int J Dev Biol ; 55(7-9): 731-44, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22161830

RESUMO

Primary murine mammary epithelial cells cultured on a laminin-rich-extracellular matrix (ECM) require c-Jun N-terminal kinase (JNK) activity for acinus formation. Inhibition of JNK (using SP600125) or small interfering RNA-mediated knockdown of JNK1 blocked acinus formation, impaired cell polarisation and lumen clearance and allowed sustained extracellular signal-regulated kinase (ERK) phosphorylation, cell proliferation, adhesion-independent cell survival and expression of epithelial-mesenchymal transition markers. ERK inhibition abolished the effects of JNK blockade. Interestingly, inhibition of JNK from the time of cell seeding blocked cell polarisation and lumen clearance; later inhibition (≥ 6 h) only affected lumen clearance. ERK inhibition effectively protected cell polarisation but less so, lumen clearance. SP600125-treatment similarly affected acinus formation by the 'normal' human mammary epithelial MCF10A cell line. Expression of dominant-negative JNK1 in MCF10A cells also undermined acinus formation, generating large 'multi-acinar spheres' whose formation is probably driven by excessive luminal cell proliferation and cell survival. As JNK activity must be suppressed from the time of cell seeding to block cell polarisation, we studied the behaviour of MCF10A cells immediately after seeding in laminin rich matrix: we detected engagement of cells with the matrix, early polarisation, movement of cells into clusters and 'epithelial-cell- like' behaviour of clustered cells. Inhibition of JNK activity or expression of dominant-negative JNK1 allowed cell engagement to the matrix, but blocked cell polarisation and all subsequent 'behaviours'. While integrin activation occurred, tyrosine-phosphorylation of paxillin, Fak and Src was significantly damped by JNK inhibition. These results emphasise the multi-phase dependency of the organisation of mammary cells in 3D on JNK activity and suggest a 'permissive' support of ECM-integrin 'outside-in' signalling and a 'damping' of growth-factor ERK signalling as its two key cell physiological effects.


Assuntos
Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/enzimologia , Esferoides Celulares/citologia , Esferoides Celulares/enzimologia , Animais , Sequência de Bases , Neoplasias da Mama/enzimologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Polaridade Celular , Células Epiteliais/citologia , Células Epiteliais/enzimologia , Transição Epitelial-Mesenquimal , Matriz Extracelular/enzimologia , Feminino , Técnicas de Silenciamento de Genes , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Proteína Quinase 8 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 8 Ativada por Mitógeno/genética , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , RNA Interferente Pequeno/genética , Transdução de Sinais
6.
J Exp Med ; 201(6): 1007-18, 2005 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-15767367

RESUMO

Viral immune evasion strategies target key aspects of the host antiviral response. Recently, it has been recognized that Toll-like receptors (TLRs) have a role in innate defense against viruses. Here, we define the function of the vaccinia virus (VV) protein A46R and show it inhibits intracellular signalling by a range of TLRs. TLR signalling is triggered by homotypic interactions between the Toll-like-interleukin-1 resistance (TIR) domains of the receptors and adaptor molecules. A46R contains a TIR domain and is the only viral TIR domain-containing protein identified to date. We demonstrate that A46R targets the host TIR adaptors myeloid differentiation factor 88 (MyD88), MyD88 adaptor-like, TIR domain-containing adaptor inducing IFN-beta (TRIF), and the TRIF-related adaptor molecule and thereby interferes with downstream activation of mitogen-activated protein kinases and nuclear factor kappaB. TRIF mediates activation of interferon (IFN) regulatory factor 3 (IRF3) and induction of IFN-beta by TLR3 and TLR4 and suppresses VV replication in macrophages. Here, A46R disrupted TRIF-induced IRF3 activation and induction of the TRIF-dependent gene regulated on activation, normal T cell expressed and secreted. Furthermore, we show that A46R is functionally distinct from another described VV TLR inhibitor, A52R. Importantly, VV lacking the A46R gene was attenuated in a murine intranasal model, demonstrating the importance of A46R for VV virulence.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Antígenos de Diferenciação/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Glicoproteínas de Membrana/metabolismo , Receptores de Superfície Celular/metabolismo , Receptores Imunológicos/metabolismo , Vaccinia virus/metabolismo , Proteínas Virais/metabolismo , Transportadores de Cassetes de Ligação de ATP , Proteínas Adaptadoras de Transdução de Sinal , Sequência de Aminoácidos , Animais , Linhagem Celular , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Regulação Viral da Expressão Gênica/genética , Regulação Viral da Expressão Gênica/fisiologia , Humanos , Fator Regulador 3 de Interferon , Interferon beta/biossíntese , Ativação Linfocitária/genética , Ativação Linfocitária/fisiologia , Sistema de Sinalização das MAP Quinases/genética , Camundongos , Dados de Sequência Molecular , Fator 88 de Diferenciação Mieloide , Proteínas Periplásmicas de Ligação , Estrutura Terciária de Proteína/genética , Estrutura Terciária de Proteína/fisiologia , Linfócitos T/fisiologia , Receptor 3 Toll-Like , Receptor 4 Toll-Like , Receptores Toll-Like , Fatores de Transcrição/metabolismo , Vaccinia virus/genética , Vaccinia virus/patogenicidade , Proteínas Virais/genética , Viroses/genética , Viroses/fisiopatologia , Replicação Viral/genética , Replicação Viral/fisiologia
7.
J Biol Chem ; 279(35): 36570-8, 2004 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-15215253

RESUMO

Poxviruses encode proteins that suppress host immune responses, including secreted decoy receptors for pro-inflammatory cytokines such as interleukin-1 (IL-1) and the vaccinia virus proteins A46R and A52R that inhibit intracellular signaling by members of the IL-1 receptor (IL-1R) and Toll-like receptor (TLR) family. In vivo, the TLRs mediate the innate immune response by serving as pathogen recognition receptors, whose oligomerized intracellular Toll/IL-1 receptor (TIR) domains can initiate innate immune signaling. A family of TIR domain-containing adapter molecules transduces signals from engaged receptors that ultimately activate NF-kappaB and/or interferon regulatory factor 3 (IRF3) to induce pro-inflammatory cytokines. Data base searches detected a significant similarity between the N1L protein of vaccinia virus and A52R, a poxvirus inhibitor of TIR signaling. Compared with other poxvirus virulence factors, the poxvirus N1L protein strongly affects virulence in vivo; however, the precise target of N1L was previously unknown. Here we show that N1L suppresses NF-kappaB activation following engagement of Toll/IL-1 receptors, tumor necrosis factor receptors, and lymphotoxin receptors. N1L inhibited receptor-, adapter-, TRAF-, and IKK-alpha and IKK-beta-dependent signaling to NF-kappaB. N1L associated with several components of the multisubunit I-kappaB kinase complex, most strongly associating with the kinase, TANK-binding kinase 1 (TBK1). Together these findings are consistent with the hypothesis that N1L disrupts signaling to NF-kappaB by Toll/IL-1Rs and TNF superfamily receptors by targeting the IKK complex for inhibition. Furthermore, N1L inhibited IRF3 signaling, which is also regulated by TBK1. These studies define a role for N1L as an immunomodulator of innate immunity by targeting components of NF-kappaB and IRF3 signaling pathways.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Glicoproteínas de Membrana/metabolismo , NF-kappa B/antagonistas & inibidores , Poxviridae/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Superfície Celular/metabolismo , Fatores de Transcrição/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Virais/fisiologia , Linhagem Celular , Citocinas/metabolismo , Relação Dose-Resposta a Droga , Genes Reporter , Vetores Genéticos , Humanos , Quinase I-kappa B , Fator Regulador 3 de Interferon , Interleucina-1/metabolismo , NF-kappa B/metabolismo , Plasmídeos/metabolismo , Testes de Precipitina , Ligação Proteica , Biossíntese de Proteínas , Estrutura Terciária de Proteína , Transdução de Sinais , Receptores Toll-Like , Transcrição Gênica , Transfecção , Proteínas Virais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA