Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Struct Biol ; 203(2): 71-80, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29545204

RESUMO

Baculovirus-insect cell expression system has become one of the most widely used eukaryotic expression systems for heterologous protein production in many laboratories. The availability of robust insect cell lines, serum-free media, a range of vectors and commercially-packaged kits have supported the demand for maximizing the exploitation of the baculovirus-insect cell expression system. Naturally, this resulted in varied strategies adopted by different laboratories to optimize protein production. Most laboratories have preference in using either the E. coli transposition-based recombination bacmid technology (e.g. Bac-to-Bac®) or homologous recombination transfection within insect cells (e.g. flashBAC™). Limited data is presented in the literature to benchmark the protocols used for these baculovirus vectors to facilitate the selection of a system for optimal production of target proteins. Taking advantage of the Protein Production and Purification Partnership in Europe (P4EU) scientific network, a benchmarking initiative was designed to compare the diverse protocols established in thirteen individual laboratories. This benchmarking initiative compared the expression of four selected intracellular proteins (mouse Dicer-2, 204 kDa; human ABL1 wildtype, 126 kDa; human FMRP, 68 kDa; viral vNS1-H1, 76 kDa). Here, we present the expression and purification results on these proteins and highlight the significant differences in expression yields obtained using different commercially-packaged baculovirus vectors. The highest expression level for difficult-to-express intracellular protein candidates were observed with the EmBacY baculovirus vector system.


Assuntos
Baculoviridae/genética , Vetores Genéticos/genética , Proteínas Recombinantes/metabolismo , Animais , Linhagem Celular , Escherichia coli/genética , Escherichia coli/metabolismo , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Humanos , Camundongos , Proteínas Proto-Oncogênicas c-abl/genética , Proteínas Proto-Oncogênicas c-abl/metabolismo , Proteínas Recombinantes/genética , Ribonuclease III/genética , Ribonuclease III/metabolismo , Células Sf9
2.
Mol Cell ; 61(4): 575-588, 2016 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-26895426

RESUMO

Cohesin stably holds together the sister chromatids from S phase until mitosis. To do so, cohesin must be protected against its cellular antagonist Wapl. Eco1 acetylates cohesin's Smc3 subunit, which locks together the sister DNAs. We used yeast genetics to dissect how Wapl drives cohesin from chromatin and identified mutants of cohesin that are impaired in ATPase activity but remarkably confer robust cohesion that bypasses the need for the cohesin protectors Eco1 in yeast and Sororin in human cells. We uncover a functional asymmetry within the heart of cohesin's highly conserved ABC-like ATPase machinery and find that both ATPase sites contribute to DNA loading, whereas DNA release is controlled specifically by one site. We propose that Smc3 acetylation locks cohesin rings around the sister chromatids by counteracting an activity associated with one of cohesin's two ATPase sites.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , DNA/metabolismo , Proteínas Nucleares/metabolismo , Saccharomyces cerevisiae/genética , Acetilação , Domínio Catalítico , Ciclo Celular , Cromatina/genética , Humanos , Proteínas Nucleares/química , Proteínas Nucleares/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Coesinas
3.
Proc Natl Acad Sci U S A ; 112(5): 1505-10, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25605945

RESUMO

MHC class I molecules present a variable but limited repertoire of antigenic peptides for T-cell recognition. Understanding how peptide selection is achieved requires mechanistic insights into the interactions between the MHC I and candidate peptides. We find that, at first encounter, MHC I H-2K(b) considers a wide range of peptides, including those with expanded N termini and unfitting anchor residues. Discrimination occurs in the second step, when noncanonical peptides dissociate with faster exchange rates. This second step exhibits remarkable temperature sensitivity, as illustrated by numerous noncanonical peptides presented by H-2K(b) in cells cultured at 26 °C relative to 37 °C. Crystallographic analyses of H-2K(b)-peptide complexes suggest that a conformational adaptation of H-2K(b) drives the decisive step in peptide selection. We propose that MHC class I molecules consider initially a large peptide pool, subsequently refined by a temperature-sensitive induced-fit mechanism to retain the canonical peptide repertoire.


Assuntos
Antígenos de Histocompatibilidade Classe I/química , Peptídeos/química , Sequência de Aminoácidos , Cristalografia por Raios X , Entropia , Cinética , Peptídeos/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA