Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 34(3): 505-518.e6, 2024 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-38215744

RESUMO

Germ cells are essential to sexual reproduction. Across the animal kingdom, extracellular signaling isoprenoids, such as retinoic acids (RAs) in vertebrates and juvenile hormones (JHs) in invertebrates, facilitate multiple processes in reproduction. Here we investigated the role of these potent signaling molecules in embryonic germ cell development, using JHs in Drosophila melanogaster as a model system. In contrast to their established endocrine roles during larval and adult germline development, we found that JH signaling acts locally during embryonic development. Using an in vivo biosensor, we observed active JH signaling first within and near primordial germ cells (PGCs) as they migrate to the developing gonad. Through in vivo and in vitro assays, we determined that JHs are both necessary and sufficient for PGC migration. Analysis into the mechanisms of this newly uncovered paracrine JH function revealed that PGC migration was compromised when JHs were decreased or increased, suggesting that specific titers or spatiotemporal JH dynamics are required for robust PGC colonization of the gonad. Compromised PGC migration can impair fertility and cause germ cell tumors in many species, including humans. In mammals, retinoids have many roles in development and reproduction. We found that like JHs in Drosophila, RA was sufficient to impact mouse PGC migration in vitro. Together, our study reveals a previously unanticipated role of isoprenoids as local effectors of pre-gonadal PGC development and suggests a broadly shared mechanism in PGC migration.


Assuntos
Drosophila melanogaster , Hormônios Juvenis , Humanos , Camundongos , Animais , Células Germinativas , Drosophila , Gônadas , Terpenos , Movimento Celular , Mamíferos
2.
Cell Rep ; 3(3): 651-60, 2013 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-23478019

RESUMO

Induced pluripotent stem cells (iPSCs) hold great promise for personalized regenerative medicine. However, recent studies show that iPSC lines carry genetic abnormalities, suggesting that reprogramming may be mutagenic. Here, we show that the ectopic expression of reprogramming factors increases the level of phosphorylated histone H2AX, one of the earliest cellular responses to DNA double-strand breaks (DSBs). Additional mechanistic studies uncover a direct role of the homologous recombination (HR) pathway, a pathway essential for error-free repair of DNA DSBs, in reprogramming. This role is independent of the use of integrative or nonintegrative methods in introducing reprogramming factors, despite the latter being considered a safer approach that circumvents genetic modifications. Finally, deletion of the tumor suppressor p53 rescues the reprogramming phenotype in HR-deficient cells primarily through the restoration of reprogramming-dependent defects in cell proliferation and apoptosis. These mechanistic insights have important implications for the design of safer approaches to creating iPSCs.


Assuntos
Reprogramação Celular/genética , Recombinação Homóloga/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Animais , Apoptose/genética , Diferenciação Celular/genética , Linhagem Celular , Proliferação de Células , Quebras de DNA de Cadeia Dupla , Deleção de Genes , Genes p53/genética , Histonas/genética , Histonas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Camundongos , Fenótipo
3.
Cell Stem Cell ; 11(6): 783-98, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23103054

RESUMO

Although transcriptional regulation of stem cell pluripotency and differentiation has been extensively studied, only a small number of studies have addressed the roles for posttranslational modifications in these processes. A key mechanism of posttranslational modification is ubiquitination by the ubiquitin-proteasome system (UPS). Here, using shotgun proteomics, we map the ubiquitinated protein landscape during embryonic stem cell (ESC) differentiation and induced pluripotency. Moreover, using UPS-targeted RNAi screens, we identify additional regulators of pluripotency and differentiation. We focus on two of these proteins, the deubiquitinating enzyme Psmd14 and the E3 ligase Fbxw7, and characterize their importance in ESC pluripotency and cellular reprogramming. This global characterization of the UPS as a key regulator of stem cell pluripotency opens the way for future studies that focus on specific UPS enzymes or ubiquitinated substrates.


Assuntos
Reprogramação Celular/genética , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular , Proliferação de Células , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Proteínas F-Box/metabolismo , Proteína 7 com Repetições F-Box-WD , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Fluorescência Verde/metabolismo , Meia-Vida , Camundongos , Estabilidade Proteica , Proteólise , Proteoma/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA Interferente Pequeno/metabolismo , Transativadores/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
4.
Nat Biotechnol ; 28(8): 848-55, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20644536

RESUMO

Induced pluripotent stem cells (iPSCs) have been derived from various somatic cell populations through ectopic expression of defined factors. It remains unclear whether iPSCs generated from different cell types are molecularly and functionally similar. Here we show that iPSCs obtained from mouse fibroblasts, hematopoietic and myogenic cells exhibit distinct transcriptional and epigenetic patterns. Moreover, we demonstrate that cellular origin influences the in vitro differentiation potentials of iPSCs into embryoid bodies and different hematopoietic cell types. Notably, continuous passaging of iPSCs largely attenuates these differences. Our results suggest that early-passage iPSCs retain a transient epigenetic memory of their somatic cells of origin, which manifests as differential gene expression and altered differentiation capacity. These observations may influence ongoing attempts to use iPSCs for disease modeling and could also be exploited in potential therapeutic applications to enhance differentiation into desired cell lineages.


Assuntos
Diferenciação Celular , Linhagem da Célula , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Animais , Linfócitos B/citologia , Células Cultivadas , Corpos Embrioides/citologia , Corpos Embrioides/metabolismo , Epigenômica , Fibroblastos/citologia , Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Camundongos , Músculo Esquelético/citologia , Células-Tronco/citologia , Transcrição Gênica
5.
Blood ; 115(23): 4689-98, 2010 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-20371744

RESUMO

Numerous publications have described the importance of bone morphogenetic protein (BMP) signaling in the specification of hematopoietic tissue in developing embryos. Here we investigate the full role of canonical BMP signaling in both adult and fetal liver hematopoiesis using conditional knockout strategies because conventional disruption of components of the BMP signaling pathway result in early death of the embryo. By targeting both Smad1 and Smad5, we have generated a double-knockout mouse with complete disruption of canonical BMP signaling. Interestingly, concurrent deletion of Smad1 and Smad5 results in death because of extrahematopoietic pathologic changes in the colon. However, Smad1/Smad5-deficient bone marrow cells can compete normally with wild-type cells and display unaffected self-renewal and differentiation capacity when transplanted into lethally irradiated recipients. Moreover, although BMP receptor expression is increased in fetal liver, fetal liver cells deficient in both Smad1 and Smad5 remain competent to long-term reconstitute lethally irradiated recipients in a multilineage manner. In conclusion, canonical BMP signaling is not required to maintain either adult or fetal liver hematopoiesis, despite its crucial role in the initial patterning of hematopoiesis in early embryonic development.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Feto/embriologia , Hematopoese Extramedular/fisiologia , Células-Tronco Hematopoéticas/metabolismo , Fígado/embriologia , Transdução de Sinais/fisiologia , Animais , Receptores de Proteínas Morfogenéticas Ósseas/biossíntese , Receptores de Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/genética , Diferenciação Celular/fisiologia , Colo/embriologia , Colo/metabolismo , Perda do Embrião/genética , Perda do Embrião/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Transplante de Células-Tronco Hematopoéticas , Fígado/metabolismo , Camundongos , Camundongos Knockout , Proteína Smad1/genética , Proteína Smad1/metabolismo , Proteína Smad5/genética , Proteína Smad5/metabolismo , Transplante Homólogo
6.
Nature ; 460(7259): 1145-8, 2009 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-19668190

RESUMO

The overexpression of defined transcription factors in somatic cells results in their reprogramming into induced pluripotent stem (iPS) cells. The extremely low efficiency and slow kinetics of in vitro reprogramming suggest that further rare events are required to generate iPS cells. The nature and identity of these events, however, remain elusive. We noticed that the reprogramming potential of primary murine fibroblasts into iPS cells decreases after serial passaging and the concomitant onset of senescence. Consistent with the notion that loss of replicative potential provides a barrier for reprogramming, here we show that cells with low endogenous p19(Arf) (encoded by the Ink4a/Arf locus, also known as Cdkn2a locus) protein levels and immortal fibroblasts deficient in components of the Arf-Trp53 pathway yield iPS cell colonies with up to threefold faster kinetics and at a significantly higher efficiency than wild-type cells, endowing almost every somatic cell with the potential to form iPS cells. Notably, the acute genetic ablation of Trp53 (also known as p53) in cellular subpopulations that normally fail to reprogram rescues their ability to produce iPS cells. Our results show that the acquisition of immortality is a crucial and rate-limiting step towards the establishment of a pluripotent state in somatic cells and underscore the similarities between induced pluripotency and tumorigenesis.


Assuntos
Reprogramação Celular/fisiologia , Senescência Celular/fisiologia , Células-Tronco Pluripotentes/citologia , Animais , Diferenciação Celular , Divisão Celular , Linhagem Celular , Células Cultivadas , Inibidor p16 de Quinase Dependente de Ciclina/deficiência , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Regulação para Baixo , Fibroblastos/citologia , Fibroblastos/metabolismo , Expressão Gênica , Humanos , Queratinócitos , Cinética , Camundongos , Camundongos SCID , Células-Tronco Pluripotentes/metabolismo , Proteína Supressora de Tumor p53/deficiência , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
7.
Nat Genet ; 41(9): 968-76, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19668214

RESUMO

The reprogramming of somatic cells into induced pluripotent stem (iPS) cells upon overexpression of the transcription factors Oct4, Sox2, Klf4 and cMyc is inefficient. It has been assumed that the somatic differentiation state provides a barrier for efficient reprogramming; however, direct evidence for this notion is lacking. Here, we tested the potential of mouse hematopoietic cells at different stages of differentiation to be reprogrammed into iPS cells. We show that hematopoietic stem and progenitor cells give rise to iPS cells up to 300 times more efficiently than terminally differentiated B and T cells do, yielding reprogramming efficiencies of up to 28%. Our data provide evidence that the differentiation stage of the starting cell has a critical influence on the efficiency of reprogramming into iPS cells. Moreover, we identify hematopoietic progenitors as an attractive cell type for applications of iPS cell technology in research and therapy.


Assuntos
Diferenciação Celular/fisiologia , Reprogramação Celular , Células-Tronco Hematopoéticas/citologia , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Animais , Animais Recém-Nascidos , Linhagem Celular , Células Cultivadas , Quimera , Fibroblastos/citologia , Regulação da Expressão Gênica no Desenvolvimento , Genes Reporter , Vetores Genéticos , Proteínas de Fluorescência Verde/metabolismo , Fator 4 Semelhante a Kruppel , Lentivirus/genética , Camundongos , Dados de Sequência Molecular , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transdução Genética
9.
Stem Cells ; 27(2): 300-6, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19008347

RESUMO

Several laboratories have reported the reprogramming of mouse and human fibroblasts into pluripotent cells, using retroviruses carrying the Oct4, Sox2, Klf4, and c-Myc transcription factor genes. In these experiments the frequency of reprogramming was lower than 0.1% of the infected cells, raising the possibility that additional events are required to induce reprogramming, such as activation of genes triggered by retroviral insertions. We have therefore determined by ligation-mediated polymerase chain reaction (LM-PCR) the retroviral insertion sites in six induced pluripotent stem (iPS) cell clones derived from mouse fibroblasts. Seventy-nine insertion sites were assigned to a single mouse genome location. Thirty-five of these mapped to gene transcription units, whereas 29 insertions landed within 10 kilobases of transcription start sites. No common insertion site was detected among the iPS clones studied. Moreover, bioinformatics analyses revealed no enrichment of a specific gene function, network, or pathway among genes targeted by retroviral insertions. We conclude that Oct4, Sox2, Klf4, and c-Myc are sufficient to promote fibroblast-to-iPS cell reprogramming and propose that the observed low reprogramming frequencies may have alternative explanations.


Assuntos
Fibroblastos/citologia , Vetores Genéticos/genética , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Retroviridae/genética , Animais , Southern Blotting , Linhagem Celular , Biologia Computacional , Fibroblastos/virologia , Humanos , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Camundongos , Fator 3 de Transcrição de Octâmero/genética , Células-Tronco Pluripotentes/virologia , Reação em Cadeia da Polimerase , Proteínas Proto-Oncogênicas c-myc/genética , Fatores de Transcrição SOXB1/genética
10.
Stem Cells ; 27(3): 543-9, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19096035

RESUMO

Induced pluripotent stem (iPS) cells can be generated using retroviral vectors expressing Oct4, Klf4, Sox2, and cMyc. Most prior studies have required multiple retroviral vectors for reprogramming, resulting in high numbers of genomic integrations in iPS cells and limiting their use for therapeutic applications. Here we describe the use of a single lentiviral vector expressing a "stem cell cassette" composed of the four transcription factors and a combination of 2A peptide and internal ribosome entry site technology, generating iPS cells from postnatal fibroblasts. iPS cells generated in this manner display embryonic stem cell-like morphology, express stem cell markers, and exhibit in vivo pluripotency, as evidenced by their ability to differentiate in teratoma assays and their robust contribution to mouse chimeras. Combining all factors into a single transcript achieves the most efficient reprogramming system to date and allows derivation of iPS cells with a single viral integration. The use of a single lentiviral vector for reprogramming represents a powerful laboratory tool and a significant step toward the application of iPS technology for clinical purposes.


Assuntos
Lentivirus/genética , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Animais , Southern Blotting , Células Cultivadas , Vetores Genéticos/genética , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/fisiologia , Camundongos , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/fisiologia , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/fisiologia
12.
Science ; 322(5903): 945-9, 2008 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-18818365

RESUMO

Pluripotent stem cells have been generated from mouse and human somatic cells by viral expression of the transcription factors Oct4, Sox2, Klf4, and c-Myc. A major limitation of this technology is the use of potentially harmful genome-integrating viruses. We generated mouse induced pluripotent stem (iPS) cells from fibroblasts and liver cells by using nonintegrating adenoviruses transiently expressing Oct4, Sox2, Klf4, and c-Myc. These adenoviral iPS (adeno-iPS) cells show DNA demethylation characteristic of reprogrammed cells, express endogenous pluripotency genes, form teratomas, and contribute to multiple tissues, including the germ line, in chimeric mice. Our results provide strong evidence that insertional mutagenesis is not required for in vitro reprogramming. Adenoviral reprogramming may provide an improved method for generating and studying patient-specific stem cells and for comparing embryonic stem cells and iPS cells.


Assuntos
Adenoviridae/genética , Reprogramação Celular , Fibroblastos/citologia , Vetores Genéticos , Hepatócitos/citologia , Células-Tronco Pluripotentes , Adenoviridae/fisiologia , Animais , Diferenciação Celular , Linhagem Celular , Quimera , Clonagem Molecular , Feminino , Fibroblastos/metabolismo , Fibroblastos/virologia , Genes myc , Hepatócitos/metabolismo , Hepatócitos/virologia , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Fígado/citologia , Fígado/embriologia , Masculino , Camundongos , Camundongos SCID , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/transplante , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Teratoma/etiologia , Transgenes , Integração Viral
13.
Curr Biol ; 18(12): 890-4, 2008 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-18501604

RESUMO

Induced pluripotent stem (iPS) cells have been derived from fibroblast, stomach, and liver cultures at extremely low frequencies by ectopic expression of the transcription factors Oct4, Sox2, c-myc, and Klf4, a process coined direct or in vitro reprogramming [1-8]. iPS cells are molecularly and functionally highly similar to embryonic stem cells (ESCs), including their ability to contribute to all tissues as well as the germline in mice. The heterogeneity of the starting cell populations and the low efficiency of reprogramming suggested that a rare cell type, such as an adult stem cell, might be the cell of origin for iPS cells and that differentiated cells are refractory to reprogramming. Here, we used inducible lentiviruses [9] to express Oct4, Sox2, c-myc, and Klf4 in pancreatic beta cells to assess whether a defined terminally differentiated cell type remains amenable to reprogramming. Genetically marked beta cells gave rise to iPS cells that expressed pluripotency markers, formed teratomas, and contributed to cell types of all germ layers in chimeric animals. Our results provide genetic proof that terminally differentiated cells can be reprogrammed into pluripotent cells, suggesting that in vitro reprogramming is not restricted to certain cell types or differentiation stages.


Assuntos
Diferenciação Celular/fisiologia , Células Secretoras de Insulina/citologia , Células-Tronco Pluripotentes/citologia , Animais , Células Cultivadas , Quimera , Feminino , Células Secretoras de Insulina/virologia , Fator 4 Semelhante a Kruppel , Lentivirus/genética , Lentivirus/metabolismo , Lentivirus/fisiologia , Camundongos , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Teratoma , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transdução Genética
14.
Exp Hematol ; 35(3): 490-499, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17309829

RESUMO

OBJECTIVE: Development of a mouse line permitting live imaging of cells expressing CD41/GpIIb as a means to study megakaryopoiesis. MATERIALS AND METHODS: The gene encoding yellow fluorescent protein (eyfp) was inserted by homologous recombination into embryonic stem cells at the start site of the gpIIb locus. A knockin mouse line, designated CD41-yellow fluorescent protein (YFP), was developed and was characterized by fluorescence microscopy and flow cytometry. Activity of YFP(+) platelets was determined by induction of P-selectin expression in response to thrombin stimulation. RESULTS: CD41-YFP mice contained YFP-labeled megakaryocytes and platelets, the proportions of which varied, depending on the genotype and individual animal, while lymphoid, myelomonocytic, and erythroid lineages were negative. In addition, a fraction of hematopoietic stem cells and intermediate progenitors expressed YFP at low levels. Crossing CD41-YFP mice with lysozyme green fluorescent protein and globin cyan fluorescent protein mice, followed by in vivo imaging of fetal liver, revealed megakaryocytic cells as a subset distinct from myeloid and erythroid cells. This experiment is also the first to show the distribution of three hematopoietic lineages in a minimally perturbed organ. Surprisingly, analysis of CD41-YFP platelets showed that the YFP(+) subset is more responsive to thrombin stimulation than the YFP(-) subset. Experiments aimed at determining the stability of the YFP(+) platelets showed that after lethal irradiation of CD41-YFP mice, the proportion of labeled platelets in the blood declines more rapidly than the bulk of the platelets. CONCLUSION: The newly developed mouse line should become useful not only for in vivo imaging experiments of megakaryocytes and platelets, but also for studies on platelet aging and function. Our irradiation experiments suggest that the YFP(+) platelets are enriched for newly made cells because YFP has a shorter half-life than platelets. Therefore, the finding that YFP(+) platelets are more responsive to thrombin stimulation raises the possibility that platelet activity decreases rapidly during physiological aging.


Assuntos
Plaquetas/efeitos dos fármacos , Proteínas Luminescentes/genética , Megacariócitos/imunologia , Glicoproteína IIb da Membrana de Plaquetas/genética , Proteínas Recombinantes de Fusão/biossíntese , Trombina/farmacologia , Animais , Plaquetas/imunologia , Plaquetas/efeitos da radiação , Linhagem Celular , Relação Dose-Resposta a Droga , Genótipo , Megacariócitos/citologia , Camundongos , Camundongos Transgênicos , Selectina-P/biossíntese , Selectina-P/efeitos dos fármacos , Selectina-P/imunologia , Proteínas Recombinantes de Fusão/genética , Coloração e Rotulagem , Fatores de Tempo , Irradiação Corporal Total
15.
Dev Biol ; 302(1): 195-207, 2007 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-17064678

RESUMO

Little is known about the formation of the interventricular septum (IVS), a central event during cardiogenesis. Here, we describe a novel population of myocardial progenitor cells in the primitive ventricle of the mouse embryo, which is characterized by expression of lysozyme M (lysM). Using LysM-Cre mice we show that lysozyme expressing cells give rise to the IVS and to a part of the left ventricular free wall, demonstrating that these heart regions are developmentally related. LysM+ precursors are not of hematopoietic origin and develop in the absence of transcription factors that regulate lysozyme expression in macrophages. LysM-deficient mice lack an overt cardiac phenotype, perhaps due to compensation by the related lysozyme P, which we also found to be expressed in the developing heart. Direct visualization of lysM expression, using LysM-EGFP knock-in mice, showed that ventricular septation is initiated at embryonic day 9 by the movement of myocardial trabeculae from the primitive ventricle towards the bulbo-ventricular groove and revealed the dynamics of IVS formation at later stages. Our studies predict that LysM-Cre mice will be useful to inactivate genes in the developing IVS.


Assuntos
Septos Cardíacos/embriologia , Ventrículos do Coração/embriologia , Miocárdio/citologia , Células-Tronco/citologia , Animais , Proteína beta Intensificadora de Ligação a CCAAT/genética , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Fluorescência Verde/genética , Septos Cardíacos/citologia , Camundongos , Muramidase/genética , Miocárdio/metabolismo , Proteínas Proto-Oncogênicas/genética , Transativadores/genética
16.
Immunity ; 25(5): 731-44, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17088084

RESUMO

The differentiation potential of T lineage cells becomes restricted soon after entry of multipotent precursors into the thymus and is accompanied by a downregulation of the transcription factors C/EBP alpha and PU.1. To investigate this restriction point, we have expressed C/EBP alpha and PU.1 in fully committed pre-T cells and found that C/EBP alpha (and C/EBP beta) induced the formation of functional macrophages. In contrast, PU.1 converted them into myeloid dendritic cells under identical culture conditions. C/EBP alpha-induced reprogramming is complex because upregulation of some but not all myelomonocytic markers required endogenous PU.1. Notch signaling partially inhibited C/EBP alpha-induced macrophage formation and completely blocked PU.1-induced dendritic cell formation. Likewise, expression of intracellular Notch or the transcription factor GATA-3 inhibited C/EBP alpha-induced lineage conversion. Our data show that committed T cell progenitors remain susceptible to the lineage instructive effects of myeloid transcription factors and suggest that Notch signaling induces T lineage restriction by downregulating C/EBP alpha and PU.1 in multilineage precursors.


Assuntos
Proteína alfa Estimuladora de Ligação a CCAAT/imunologia , Células Dendríticas/citologia , Macrófagos/citologia , Proteínas Proto-Oncogênicas/imunologia , Células-Tronco/citologia , Linfócitos T/citologia , Transativadores/imunologia , Animais , Diferenciação Celular/imunologia , Linhagem da Célula/imunologia , Células Dendríticas/imunologia , Citometria de Fluxo , Expressão Gênica/imunologia , Regulação da Expressão Gênica/imunologia , Macrófagos/imunologia , Camundongos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células-Tronco/imunologia , Linfócitos T/imunologia
17.
Annu Rev Immunol ; 24: 705-38, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16551264

RESUMO

In recent years, investigators have made great progress in delineating developmental pathways of several lymphoid and myeloid lineages and in identifying transcription factors that establish and maintain their fate. However, the developmental branching points between these two large cell compartments are still controversial, and little is known about how their diversification is induced. Here, we give an overview of determinants that play a role at lymphoid-myeloid junctures, in particular transcription factors and cytokine receptors. Experiments showing that myeloid lineages can be reversibly reprogrammed into one another by transcription factor network perturbations are used to highlight key principles of lineage commitment. We also discuss experiments showing that lymphoid-to-myeloid but not myeloid-to-lymphoid conversions can be induced by the enforced expression of a single transcription factor. We close by proposing that this asymmetry is related to a higher complexity of transcription factor networks in lymphoid cells compared with myeloid cells, and we suggest that this feature must be considered when searching for mechanisms by which hematopoietic stem cells become committed to lymphoid lineages.


Assuntos
Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/imunologia , Animais , Linfócitos B/citologia , Linfócitos B/imunologia , Diferenciação Celular , Células Dendríticas/citologia , Células Dendríticas/imunologia , Feto/citologia , Feto/imunologia , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Hematopoéticas/metabolismo , Humanos , Células Matadoras Naturais/citologia , Células Matadoras Naturais/imunologia , Fígado/citologia , Fígado/embriologia , Fígado/imunologia , Linfopoese , Camundongos , Modelos Imunológicos , Mielopoese , Receptores de Citocinas/metabolismo , Transdução de Sinais , Linfócitos T/citologia , Linfócitos T/imunologia , Fatores de Transcrição/metabolismo
18.
Development ; 132(1): 203-13, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15576407

RESUMO

Hematopoietic cells have been reported to convert into a number of non-hematopoietic cells types after transplantation/injury. Here, we have used a lineage tracing approach to determine whether hematopoietic plasticity is relevant for the normal development of hepatocytes and endothelial cells, both of which develop in close association with blood cells. Two mouse models were analyzed: vav ancestry mice, in which essentially all hematopoietic cells, including stem cells, irreversibly express yellow fluorescent protein (YFP); and lysozyme ancestry mice, in which all macrophages, as well as a small subset of all other non-myeloid hematopoietic cells, are labeled. Both lines were found to contain YFP+ hepatocytes at similar frequencies, indicating that macrophage to hepatocyte contributions occur in unperturbed mice. However, the YFP+ hepatocytes never formed clusters larger than three cells, suggesting a postnatal origin. In addition, the frequency of these cells was very low (approximately 1 in 75,000) and only increased two- to threefold after acute liver injury. Analysis of the two mouse models revealed no evidence for a hematopoietic origin of endothelial cells, showing that definitive HSCs do not function as hemangioblasts during normal development. Using endothelial cells and hepatocytes as paradigms, our study indicates that hematopoietic cells are tightly restricted in their differentiation potential during mouse embryo development and that hematopoietic plasticity plays at best a minor role in adult organ maintenance and regeneration.


Assuntos
Endotélio Vascular/citologia , Células-Tronco Hematopoéticas/citologia , Hepatócitos/citologia , Animais , Proteínas de Bactérias/metabolismo , Células da Medula Óssea , Linhagem da Célula , Separação Celular , Endotélio Vascular/metabolismo , Citometria de Fluxo , Hepatócitos/metabolismo , Óperon Lac , Fígado/citologia , Fígado/embriologia , Fígado/patologia , Proteínas Luminescentes/metabolismo , Macrófagos/metabolismo , Camundongos , Microscopia de Fluorescência , Modelos Biológicos , Muramidase/metabolismo , Plasmídeos/metabolismo , Reação em Cadeia da Polimerase , Regeneração , Fatores de Tempo
19.
Methods Mol Med ; 105: 395-412, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15492410

RESUMO

Here, we present a computer-controlled time-lapse system for imaging of cultured hematopoietic cells labeled by the expression of different fluorescent proteins. First, we describe experiments to optimize the visualization of three green fluorescent protein variants (cyan-, green-, and yellow-enhanced fluorescent protein) and the red-fluorescent protein (DsRed) by standard wide-field fluorescence microscopy. Then, we describe procedures to best distinguish combinations of cells expressing these proteins using seven commercially available filter sets, based on the relative fluorescence intensities of the individual fluorescent proteins. Finally, we make recommendations about which of these filters to choose when working with specific fluorescent proteins.


Assuntos
Diferenciação Celular/fisiologia , Proteínas de Fluorescência Verde , Células-Tronco Hematopoéticas/fisiologia , Microscopia de Fluorescência/métodos , Animais , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Proteínas de Fluorescência Verde/genética , Humanos , Microscopia de Fluorescência/instrumentação
20.
Immunity ; 19(5): 689-99, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14614856

RESUMO

Single cell PCR studies showed that hematopoietic stem cells (HSCs) express a variety of lineage-affiliated genes. However, it remains unclear whether these cells exhibiting "lineage priming" represent bona fide stem cells or a subpopulation earmarked for differentiation. Here we have used a Cre-Lox approach to follow the fate of cells expressing a lineage-affiliated marker. We crossed lysozyme Cre mice with yellow fluorescent protein (EYFP) reporter mice and found EYFP gene expression not only in myelomonocytic cells but also in a fraction of HSCs as well as B cells and T cells. Transplantation of EYFP+ HSCs into primary and secondary recipients generated mice in which all hematopoietic cells were EYFP+. In contrast, crosses between CD19 Cre and lck Cre mice with reporter mice showed no EYFP expression in HSCs or intermediate progenitors. Our results demonstrate that lysozyme expression does not mark myeloid commitment and that long-term repopulation potential is maintained in primed HSCs.


Assuntos
Células-Tronco Hematopoéticas/metabolismo , Muramidase/genética , Animais , Antígenos CD19/genética , Antígenos CD19/metabolismo , Proteínas de Bactérias/metabolismo , Células da Medula Óssea/metabolismo , Técnicas de Transferência de Genes , Proteínas Luminescentes/metabolismo , Camundongos , Muramidase/metabolismo , Células Mieloides/enzimologia , Células Mieloides/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA