Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Ann Surg Open ; 4(4): e342, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38144482

RESUMO

Background: No study has contextualized the excess mortality attributable to racial and ethnic disparities in surgical outcomes. Further, not much effort has been made to quantify the effort needed to eliminate these disparities. Objective: We examined the current trends in mortality attributable to racial or ethnic disparities in the US postsurgical population. We then identified the target for mortality reduction that would be necessary to eliminate these disparities by 2030. Methods: We performed a population-based study of 1,512,974 high-risk surgical procedures among adults (18-64 years) performed across US hospitals between 2000 and 2020. Results: Between 2000 and 2020, the risk-adjusted mortality rates declined for all groups. Nonetheless, Black patients were more likely to die following surgery (adjusted relative risk 1.42; 95% CI, 1.39-1.46) driven by higher Black mortality in the northeast (1.60; 95% CI, 1.52-1.68), as well as the West (1.53; 95% CI, 1.43-1.62). Similarly, mortality risk remained consistently higher for Hispanics compared with White patients (1.21; 95% CI, 1.19-1.24), driven by higher mortality in the West (1.26; 95% CI, 1.21-1.31). Overall, 8364 fewer deaths are required for Black patients to experience mortality on the same scale as White patients. Similar figures for Hispanic patients are 4388. To eliminate the disparity between Black and White patients by 2030, we need a 2.7% annualized reduction in the projected mortality among Black patients. For Hispanics, the annualized reduction needed is 0.8%. Conclusions: Our data provides a framework for incorporating population and health systems measures for eliminating disparity in surgical mortality within the next decade.

2.
J Clin Med Res ; 14(6): 237-243, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35836727

RESUMO

Background: Pneumonia is the third most common surgical complication after urinary tract infection and wound infections. In addition to increased mortality, patients who develop postoperative pneumonia have a higher risk of prolonged hospital stay, intensive care unit (ICU) admissions, and higher healthcare costs. Obesity and chronic obstructive pulmonary disease (COPD) are both independent risk factors for the development and severity of postoperative pneumonia, although the combined effect of these comorbidities is unknown. Therefore, we evaluated whether the combination of severe obesity and COPD is associated with an increased risk of postoperative pneumonia. Methods: We performed a multicenter retrospective cohort study of 365,273 patients aged 18 - 64 years who were either severely obese (body mass index (BMI) ≥ 40 kg/m2) or normal-weight (BMI between 18.6 and 24.9 kg/m2) and underwent general surgery, orthopedic surgery, neurosurgery, otolaryngology surgery, urology surgery, and vascular surgery in the American College of Surgeons (ACS) National Surgical Quality Improvement Program (NSQIP) participating hospitals from 2014 to 2018. We evaluated the combined effect of COPD and severe obesity on the risk for postoperative pneumonia, unplanned tracheal reintubation, and extended length of stay. Results: The co-occurrence of severe obesity and COPD appeared to have a protective effect on the risk of postoperative pneumonia. In the presence of COPD, patients with severe obesity were 14% less likely to develop pneumonia compared to their normal-weight counterparts (2.9% vs. 4.4%; adjusted relative risk (RR): 0.76; 95% confidence interval (CI): 0.60, 0.95). In addition, in the presence of COPD, severe obesity conferred a lower risk for requiring an extended length of stay (37.6% vs. 47.9%; adjusted RR: 0.83; 95% CI: 0.78, 0.89). Conclusions: Counterintuitively, the co-occurrence of severe obesity with COPD appeared to buffer the negative impact of COPD on postoperative pneumonia, unplanned tracheal reintubation, and prolonged hospital stay after noncardiac surgery. These findings are consistent with the obesity paradox and warrant further investigations.

3.
Cancers (Basel) ; 14(15)2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35892842

RESUMO

Recently, immunotherapeutic approaches have become a feasible option for a subset of pediatric cancer patients. Low MHC class I expression hampers the use of immunotherapies relying on antigen presentation. A well-established stemness score (mRNAsi) was determined using the bulk transcriptomes of 1134 pediatric small round blue cell tumors. Interestingly, MHC class I gene expression (HLA-A/-B/-C) was correlated negatively with mRNAsi throughout all diagnostic entities: neuroblastomas (NB) (n = 88, r = −0.41, p < 0.001), the Ewing's sarcoma family of tumors (ESFT) (n = 117, r = −0.46, p < 0.001), rhabdomyosarcomas (RMS) (n = 158, r = −0.5, p < 0.001), Wilms tumors (WT) (n = 224, r = −0.39, p < 0.001), and central nervous system-primitive neuroectodermal tumors CNS-PNET (r = −0.49, p < 0.001), with the exception of medulloblastoma (MB) (n = 76, r = −0.24, p = 0.06). The negative correlation of MHC class I and mRNAsi was independent of clinical features in NB, RMS, and WT. In NB and WT, increased MHC class I was correlated negatively with tumor stage. RMS patients with a high expression of MHC class I and abundant CD8 T cells showed a prolonged overall survival (n = 148, p = 0.004). Possibly, low MHC class I expression and stemness in pediatric tumors are remnants of prenatal tumorigenesis from multipotent precursor cells. Further studies are needed to assess the usefulness of stemness and MHC class I as predictive markers.

4.
Sci Total Environ ; 787: 147521, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-33991918

RESUMO

Coupling of denitrifying polyphosphate accumulating organisms (DPAO) with anaerobic ammonium oxidizing (Anammox) bacteria in a single treatment scheme has so far been unsuccessful but could offer substantial energy savings, minimize sludge production, while achieving simultaneous carbon, nitrogen and phosphate removal. However, both organisms compete for nitrite and have vastly different growth rates and therefore the goal of this study was to uncouple their solid retention time (SRT) by growing them in different sludge fractions and to determine their biomass specific kinetic properties. Anammox bacteria were grown in a biofilm for longer SRTs and DPAO in flocs to allow shorter SRTs. Exposure of DPAO to anaerobic conditions was accomplished by recycling the flocs to a separate reactor by which simultaneous P, N, and C removal was accomplished. The diffusion limited biofilm lowered the biomass specific nitrite affinity for Anammox (KsAMX = 0.091 mM), which gave DPAO a competitive edge to consume nitrite (KsDPAO = 0.022 mM) in the suspended floc fraction. However, DPAO are more sensitive to nitrite (KiDPAO = 0.377 mM) than Anammox bacteria and (KiAMX > 1.786 mM), and therefore the DPAO would be better suited to grow in the protective biofilm, showing that both biomass growth types (flocs and granules) have advantages (and disadvantages) depending on the setting. This work is an important steppingstone to understanding resource competition amongst Anammox and DPAO and SRT management strategies to allow their pairing in combined reactor configurations.


Assuntos
Compostos de Amônio , Anaerobiose , Bactérias Anaeróbias , Reatores Biológicos , Desnitrificação , Nitrogênio , Oxirredução , Fósforo , Esgotos
5.
Cancers (Basel) ; 13(4)2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33670534

RESUMO

Pediatric tumors frequently arise from embryonal cells, often displaying a stem cell-like ("small round blue") morphology in tissue sections. Because recently "stemness" has been associated with a poor immune response in tumors, we investigated the association of prognostic gene expression, stemness and the immune microenvironment systematically using transcriptomes of 4068 tumors occurring mostly at the pediatric and young adult age. While the prognostic landscape of gene expression (PRECOG) and infiltrating immune cell types (CIBERSORT) is similar to that of tumor entities occurring mainly in adults, the patterns are distinct for each diagnostic entity. A high stemness score (mRNAsi) correlates with clinical and morphologic subtype in Wilms tumors, neuroblastomas, synovial sarcomas, atypical teratoid rhabdoid tumors and germ cell tumors. In neuroblastomas, a high mRNAsi is associated with shortened overall survival. In Wilms tumors a high mRNAsi correlates with blastemal morphology, whereas tumors with predominant epithelial or stromal differentiation have a low mRNAsi and a high percentage of M2 type macrophages. This could be validated in Wilms tumor tissue (n = 78). Here, blastemal areas are low in M2 macrophage infiltrates, while nearby stromal differentiated areas contain abundant M2 macrophages, suggesting local microanatomic regulation of the immune response.

6.
mSystems ; 6(1)2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33563788

RESUMO

Competition between nitrate-reducing bacteria (NRB) and sulfate-reducing bacteria (SRB) for resources in anoxic environments is generally thought to be governed largely by thermodynamics. It is now recognized that intermediates of nitrogen and sulfur cycling (e.g., hydrogen sulfide, nitrite, etc.) can also directly impact NRB and SRB activities in freshwater, wastewater, and sediment and therefore may play important roles in competitive interactions. Here, through comparative transcriptomic and metabolomic analyses, we have uncovered mechanisms of hydrogen sulfide- and cysteine-mediated inhibition of nitrate respiratory growth for the NRB Intrasporangium calvum C5. Specifically, the systems analysis predicted that cysteine and hydrogen sulfide inhibit growth of I. calvum C5 by disrupting distinct steps across multiple pathways, including branched-chain amino acid (BCAA) biosynthesis, utilization of specific carbon sources, and cofactor metabolism. We have validated these predictions by demonstrating that complementation with BCAAs and specific carbon sources relieves the growth inhibitory effects of cysteine and hydrogen sulfide. We discuss how these mechanistic insights give new context to the interplay and stratification of NRB and SRB in diverse environments.IMPORTANCE Nitrate-reducing bacteria (NRB) and sulfate-reducing bacteria (SRB) colonize diverse anoxic environments, including soil subsurface, groundwater, and wastewater. NRB and SRB compete for resources, and their interplay has major implications on the global cycling of nitrogen and sulfur species, with undesirable outcomes in some contexts. For instance, the removal of reactive nitrogen species by NRB is desirable for wastewater treatment, but in agricultural soils, NRB can drive the conversion of nitrates from fertilizers into nitrous oxide, a potent greenhouse gas. Similarly, the hydrogen sulfide produced by SRB can help sequester and immobilize toxic heavy metals but is undesirable in oil wells where competition between SRB and NRB has been exploited to suppress hydrogen sulfide production. By characterizing how reduced sulfur compounds inhibit growth and activity of NRB, we have gained systems-level and mechanistic insight into the interplay of these two important groups of organisms and drivers of their stratification in diverse environments.

7.
Water Res ; 179: 115865, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32388048

RESUMO

To date, high performance of full-scale aerobic granular sludge (AGS) technology has been demonstrated on a global scale. Its further integration with existing continuous flow activated sludge (CFAS) treatment plants is the next logical step. All granular sludge reactors operated in sequencing batch reactors (SBR) mode with anaerobic feeding conditions select for growth of phosphorus and glycogen accumulating organisms (PAO and GAO, respectively), which are known to enhance sludge settling characteristics. Therefore, we hypothesized that AGS are commonly present at full-scale CFAS processes with enhanced biological phosphorus removal (EBPR) and low sludge volume index (SVI). This hypothesis was confirmed at 13 EBPR plants, where granules were found present (at plants where SVI was lower than 100 ml/g) with a strong correlation between high granule abundance and low SVI. A wide range of granule abundance was found among the plants, ranging from 0.5% to as high as 80%. Evaluations of the EBPR plant process configurations showed that high granule abundances may be related to selector design features such as high anaerobic food to mass (F/M) ratios, unmixed in-line fermentation, and high influent soluble COD fraction. Granules were also observed at a non-EBPR plant with an aerobic selector receiving high F/M feeds. Quantitative PCR and 16S rRNA gene sequencing analyses revealed higher relative gene abundance of Accumulibacter PAO and Competibacter GAO in the granules over flocs, as well as a correlation between granule abundance and some possible EPS producers such as Flavobacterium and Competibacter. Our results indicated that process configurations that select for slow-growing or EPS-producing heterotrophs play an important role for granule formation in full-scale CFAS systems as previously shown in SBR configurations.


Assuntos
Reatores Biológicos , Esgotos , Glicogênio , Fósforo , RNA Ribossômico 16S
8.
Oncoimmunology ; 8(12): e1674113, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31741777

RESUMO

Ewing´s Sarcoma Family of Tumors (ESFT) are clinically aggressive bone and soft tissue tumors in children and young adults. Analysis of the immune tumor microenvironment (TME) provides insight into tumor evolution and novel treatment options. So far, the scarcity of immune cells in ESFT has hindered a comprehensive analysis of rare subtypes. We determined the relative fraction of 22 immune cell types using 197 microarray gene expression datasets of primary ESFT tumor samples by using CIBERSORT, a deconvolution algorithm enumerating infiltrating leucocytes in bulk tumor tissue. The most abundant cells were macrophages (mean 43% of total tumor-infiltrating leukocytes, TILs), predominantly immunosuppressive M2 type macrophages, followed by T cells (mean 23% of TILs). Increased neutrophils, albeit at low number, were associated with a poor overall survival (OS) (p = .038) and increased M2 macrophages predicted a shorter event-free survival (EFS) (p = .033). High frequency of T cells and activated NK cells correlated with prolonged OS (p = .044 and p = .007, respectively). A small patient population (9/32) with combined low infiltrating M2 macrophages, low neutrophils, and high total T cells was identified with favorable outcome. This finding was confirmed in a validation cohort of patients with follow up (11/38). When comparing the immune TME with expression of known stemness genes, hypoxia-inducible factor 1 α (HIF1α) correlated with high abundance of macrophages and neutrophils and decreased T cell levels. The immune TME in ESFTs shows a distinct composition including rare immune cell subsets that in part may be due to expression of HIF1α.

9.
ISME J ; 13(12): 3067-3079, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31462715

RESUMO

Thaumarchaeota are responsible for a significant fraction of ammonia oxidation in the oceans and in soils that range from alkaline to acidic. However, the adaptive mechanisms underpinning their habitat expansion remain poorly understood. Here we show that expansion into acidic soils and the high pressures of the hadopelagic zone of the oceans is tightly linked to the acquisition of a variant of the energy-yielding ATPases via horizontal transfer. Whereas the ATPase genealogy of neutrophilic Thaumarchaeota is congruent with their organismal genealogy inferred from concatenated conserved proteins, a common clade of V-type ATPases unites phylogenetically distinct clades of acidophilic/acid-tolerant and piezophilic/piezotolerant species. A presumptive function of pumping cytoplasmic protons at low pH is consistent with the experimentally observed increased expression of the V-ATPase in an acid-tolerant thaumarchaeote at low pH. Consistently, heterologous expression of the thaumarchaeotal V-ATPase significantly increased the growth rate of E. coli at low pH. Its adaptive significance to growth in ocean trenches may relate to pressure-related changes in membrane structure in which this complex molecular machine must function. Together, our findings reveal that the habitat expansion of Thaumarchaeota is tightly correlated with extensive horizontal transfer of atp operons.


Assuntos
Adenosina Trifosfatases/genética , Archaea/genética , Proteínas Arqueais/genética , Transferência Genética Horizontal , Óperon , Adenosina Trifosfatases/metabolismo , Compostos de Amônio/metabolismo , Archaea/classificação , Archaea/enzimologia , Archaea/isolamento & purificação , Proteínas Arqueais/metabolismo , Ecossistema , Escherichia coli/metabolismo , Concentração de Íons de Hidrogênio , Oxirredução , Filogenia , Microbiologia do Solo
10.
Clin Genitourin Cancer ; 17(1): e167-e175, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30448104

RESUMO

BACKGROUND: Karyopherin α2 (KPNA2) is involved in the nucleocytoplasmic transport system and is functionally involved in the pathogenesis of various solid tumors by the translocation of cancer associated cargo proteins. However, the role of KPNA2 in renal-cell carcinoma (RCC) is still unknown. The aim of the present study was to investigate the protein expression of KPNA2 in cancerous and healthy renal tissues to evaluate its prognostic value in RCC. PATIENTS AND METHODS: We assessed KPNA2 protein expression via immunohistochemistry in a well-characterized cohort of 240 RCC patients by using a quantitative image analysis software. In addition, we analyzed publicly available gene expression data from The Cancer Genome Atlas (TCGA). RESULTS: A subgroup of clear-cell RCC (ccRCC) showed elevated protein expression levels of KPNA2. Most remarkably, we detected a correlation between high KPNA2 protein expression and shorter overall survival times as well as higher tumor stage and International Society of Urologic Pathology grade in ccRCC. However, the prognostic value of KPNA2 was not confirmed by multivariate Cox regression analysis when tested together with strong prognostic factors like tumor stage, lymph node metastasis, International Society of Urologic Pathology grade, and resection status. The results of the TCGA gene expression data analysis confirmed the prognostic value of KPNA2 in ccRCC. Additionally, KPNA2 expression was identified as an adverse factor in papillary RCC at the transcript level. CONCLUSION: KPNA2 appears to be involved in the carcinogenesis of RCC and functions as a novel prognostic indicator.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma de Células Renais/secundário , Neoplasias Renais/patologia , alfa Carioferinas/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/cirurgia , Estudos de Coortes , Feminino , Seguimentos , Humanos , Neoplasias Renais/metabolismo , Neoplasias Renais/cirurgia , Metástase Linfática , Masculino , Pessoa de Meia-Idade , Prognóstico , Taxa de Sobrevida
11.
Environ Microbiol ; 21(1): 152-163, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30289197

RESUMO

Anthropogenic nitrate contamination is a serious problem in many natural environments. Nitrate removal by microbial action is dependent on the metal molybdenum (Mo), which is required by nitrate reductase for denitrification and dissimilatory nitrate reduction to ammonium. The soluble form of Mo, molybdate (MoO4 2- ), is incorporated into and adsorbed by iron (Fe) and aluminium (Al) (oxy) hydroxide minerals. Herein we used Oak Ridge Reservation (ORR) as a model nitrate-contaminated acidic environment to investigate whether the formation of Fe- and Al-precipitates could impede microbial nitrate removal by depleting Mo. We demonstrate that Fe and Al mineral formation that occurs as the pH of acidic synthetic groundwater is increased, decreases soluble Mo to low picomolar concentrations, a process proposed to mimic environmental diffusion of acidic contaminated groundwater. Analysis of ORR sediments revealed recalcitrant Mo in the contaminated core that co-occurred with Fe and Al, consistent with Mo scavenging by Fe/Al precipitates. Nitrate removal by ORR isolate Pseudomonas fluorescens N2A2 is virtually abolished by Fe/Al precipitate-induced Mo depletion. The depletion of naturally occurring Mo in nitrate- and Fe/Al-contaminated acidic environments like ORR or acid mine drainage sites has the potential to impede microbial-based nitrate reduction thereby extending the duration of nitrate in the environment.


Assuntos
Alumínio/química , Meio Ambiente , Ferro/química , Molibdênio/química , Ciclo do Nitrogênio , Poluentes Ambientais/química , Poluentes Ambientais/metabolismo , Poluentes Ambientais/farmacologia , Sedimentos Geológicos/química , Água Subterrânea/química , Microbiota/efeitos dos fármacos , Molibdênio/metabolismo , Molibdênio/farmacologia , Nitrato Redutase/metabolismo , Nitratos/metabolismo , Pseudomonas fluorescens/efeitos dos fármacos , Pseudomonas fluorescens/metabolismo
12.
Semin Cardiothorac Vasc Anesth ; 22(1): 95-99, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28922985

RESUMO

Malignant hyperthermia (MH) is a rare but potentially life-threatening disorder encountered during general anesthesia. The use of cardiopulmonary bypass during cardiac surgery can obscure many of the cardinal signs and symptoms of MH. The development of postoperative MH following cardiac surgery is rare, but anesthesiologists and intensivists must maintain a high index of suspicion in order to make a prompt diagnosis. Initiation and tailored maintenance of MH therapy must also consider the complex physiologic changes of patients in the immediate post-cardiac surgery period. In this article, we present a case of the development of postoperative MH in the cardiac intensive care unit after elective open heart surgery with cardiopulmonary bypass.


Assuntos
Anestesia Geral/efeitos adversos , Ponte Cardiopulmonar , Hipertermia Maligna/diagnóstico , Complicações Pós-Operatórias/diagnóstico , Androstanóis/efeitos adversos , Anestésicos Inalatórios/efeitos adversos , Anestésicos Intravenosos/efeitos adversos , Dantroleno/uso terapêutico , Diuréticos/uso terapêutico , Etomidato/efeitos adversos , Fentanila/efeitos adversos , Hidratação/métodos , Furosemida/uso terapêutico , Humanos , Isoflurano/efeitos adversos , Masculino , Hipertermia Maligna/etiologia , Hipertermia Maligna/terapia , Pessoa de Meia-Idade , Relaxantes Musculares Centrais/uso terapêutico , Fármacos Neuromusculares não Despolarizantes/efeitos adversos , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/terapia , Rocurônio , Bicarbonato de Sódio/uso terapêutico , Tempo
13.
Oncotarget ; 8(44): 76329-76339, 2017 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-29100315

RESUMO

Gastric adenocarcinomas are associated with a poor prognosis due to the fact that the tumor has often metastasized by the time of diagnosis and prognostic markers are urgently needed to tailor treatment. We examined the expression of the mitotic spindle checkpoint protein BUB1 (budding uninhibited by benzimidazoles 1) and Ki-67 protein expression by immunohistochemistry in 218 patients with primary gastric adenocarcinomas. Tumors with low frequency of BUB1 expression were associated with larger tumor size (pT) (p < 0.001), higher incidence of lymph node metastases (pN) (p = 0.027), distant metastases (pM) (p = 0.006) and higher UICC stage (p < 0.001). Furthermore, BUB1 expression was inversely correlated with residual tumor stage (p = 0.038). Abundant BUB1 protein expression correlated with frequent Ki-67 protein expression (p < 0.001) and low BUB1 expression was associated with shorter survival (p < 0.001). Univariate and multivariate analyses confirmed BUB1 to be an independent prognostic marker in gastric cancer (p = 0.021).

14.
Front Med (Lausanne) ; 3: 25, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27303668

RESUMO

INTRODUCTION: Research into the prevention of ventilator-associated lung injury (VALI) in patients with acute respiratory distress syndrome (ARDS) in the intensive care unit (ICU) has resulted in the development of a number of lung protective strategies, which have become commonplace in the treatment of critically ill patients. An increasing number of studies have applied lung protective ventilation in the operating room to otherwise healthy individuals. We review the history of lung protective strategies in patients with acute respiratory failure and explore their use in patients undergoing mechanical ventilation during general anesthesia. We aim to provide context for a discussion of the benefits and drawbacks of lung protective ventilation, as well as to inform future areas of research. METHODS: We completed a database search and reviewed articles investigating lung protective ventilation in both the ICU and in patients receiving general anesthesia through May 2015. RESULTS: Lung protective ventilation was associated with improved outcomes in patients with acute respiratory failure in the ICU. Clinical evidence is less clear regarding lung protective ventilation for patients undergoing surgery. CONCLUSION: Lung protective ventilation strategies, including low tidal volume ventilation and moderate positive end-expiratory pressure, are well established therapies to minimize lung injury in critically ill patients with and without lung disease, and may provide benefit to patients undergoing general anesthesia.

15.
BMC Anesthesiol ; 15: 31, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25767411

RESUMO

BACKGROUND: This multi-centre, prospective, randomized, double-blind, placebo-controlled study was designed to test the hypotheses that parecoxib improves patients' postoperative analgesia without increasing surgical blood loss following radical open prostatectomy. METHODS: 105 patients (64 ± 7 years old) were randomized to receive either parecoxib or placebo with concurrent morphine patient controlled analgesia. Cumulative opioid consumption (primary objective) and the overall benefit of analgesia score (OBAS), the modified brief pain inventory short form (m-BPI-sf), the opioid-related symptom distress scale (OR-SDS), and perioperative blood loss (secondary objectives) were assessed. RESULTS: In each group 48 patients received the study medication for 48 hours postoperatively. Parecoxib significantly reduced cumulative opioid consumption by 24% (43 ± 24.1 mg versus 57 ± 28 mg, mean ± SD, p=0.02), translating into improved benefit of analgesia (OBAS: 2(0/4) versus 3(1/5.25), p=0.01), pain severity (m-BPI-sf: 1(1/2) versus 2(2/3), p < 0.01) and pain interference (m-BPI-sf: 1(0/1) versus 1(1/3), p=0.001), as well as reduced opioid-related side effects (OR-SDS score: 0.3(0.075/0.51) versus 0.4(0.2/0.83), p=0.03). Blood loss was significantly higher at 24 hours following surgery in the parecoxib group (4.3 g⋅dL(-1) (3.6/4.9) versus (3.2 g⋅dL(-1) (2.4/4.95), p=0.02). CONCLUSIONS: Following major abdominal surgery, parecoxib significantly improves patients' perceived analgesia. Parecoxib may however increase perioperative blood loss. Further trials are needed to evaluate the effects of selective cyclooxygenase-2 inhibitors on blood loss. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT00346268.


Assuntos
Isoxazóis/uso terapêutico , Dor Pós-Operatória/tratamento farmacológico , Hemorragia Pós-Operatória/induzido quimicamente , Prostatectomia/efeitos adversos , Analgesia Controlada pelo Paciente/psicologia , Analgésicos Opioides/efeitos adversos , Analgésicos Opioides/uso terapêutico , Inibidores de Ciclo-Oxigenase 2/efeitos adversos , Inibidores de Ciclo-Oxigenase 2/uso terapêutico , Método Duplo-Cego , Quimioterapia Combinada/efeitos adversos , Humanos , Isoxazóis/efeitos adversos , Masculino , Pessoa de Meia-Idade , Morfina/efeitos adversos , Morfina/uso terapêutico , Manejo da Dor , Medição da Dor , Dor Pós-Operatória/psicologia , Satisfação do Paciente
16.
Int J Syst Evol Microbiol ; 65(Pt 1): 242-250, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25336720

RESUMO

A Gram-negative, spiral-shaped, chemolithotrophic, ammonia-oxidizing bacterium, designated APG3(T), was isolated into pure culture from sandy lake sediment collected from Green Lake, Seattle, WA, USA. Phylogenetic analyses based on the 16S rRNA gene sequence showed that strain APG3(T) belongs to cluster 0 of the genus Nitrosospira, which is presently not represented by described species, with Nitrosospira multiformis (cluster 3) as the closest species with a validly published name (identity of 98.6 % to the type strain). Strain APG3(T) grew at 4 °C but could not grow at 35 °C, indicating that this bacterium is psychrotolerant. Remarkably, the strain was able to grow over a wide range of pH (pH 5-9), which was greater than the pH range of any studied ammonia-oxidizing bacteria in pure culture. The DNA G+C content of the APG3(T) genome is 53.5 %, which is similar to that of Nitrosospira multiformis ATCC 25196(T) (53.9 %) but higher than that of Nitrosomonas europaea ATCC 19718 (50.7 %) and Nitrosomonas eutropha C71 (48.5 %). The average nucleotide identity (ANI) calculated for the genomes of strain APG3(T) and Nitrosospira multiformis ATCC 25196(T) was 75.45 %, significantly lower than the value of 95 % ANI that corresponds to the 70 % species-level cut-off based on DNA-DNA hybridization. Overall polyphasic taxonomy study indicated that strain APG3(T) represents a novel species in the genus Nitrosospira, for which the name Nitrosospira lacus sp. nov. is proposed (type strain APG3(T) = NCIMB 14869(T) = LMG 27536(T) = ATCC BAA-2542(T)).


Assuntos
Amônia/metabolismo , Lagos/microbiologia , Nitrosomonadaceae/classificação , Filogenia , Composição de Bases , DNA Bacteriano/genética , Dados de Sequência Molecular , Nitrosomonadaceae/genética , Nitrosomonadaceae/isolamento & purificação , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
17.
Appl Environ Microbiol ; 80(21): 6601-10, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25128343

RESUMO

Repeated use of the explosive compound hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) on military land has resulted in significant soil and groundwater pollution. Rates of degradation of RDX in the environment are low, and accumulated RDX, which the U.S. Environmental Protection Agency has determined is a possible human carcinogen, is now threatening drinking water supplies. RDX-degrading microorganisms have been isolated from RDX-contaminated land; however, despite the presence of these species in contaminated soils, RDX pollution persists. To further understand this problem, we studied RDX-degrading species belonging to four different genera (Rhodococcus, Microbacterium, Gordonia, and Williamsia) isolated from geographically distinct locations and established that the xplA and xplB (xplAB) genes, which encode a cytochrome P450 and a flavodoxin redox partner, respectively, are nearly identical in all these species. Together, the xplAB system catalyzes the reductive denitration of RDX and subsequent ring cleavage under aerobic and anaerobic conditions. In addition to xplAB, the Rhodococcus species studied here share a 14-kb region flanking xplAB; thus, it appears likely that the RDX-metabolizing ability was transferred as a genomic island within a transposable element. The conservation and transfer of xplAB-flanking genes suggest a role in RDX metabolism. We therefore independently knocked out genes within this cluster in the RDX-degrading species Rhodococcus rhodochrous 11Y. Analysis of the resulting mutants revealed that XplA is essential for RDX degradation and that XplB is not the sole contributor of reducing equivalents to XplA. While XplA expression is induced under nitrogen-limiting conditions and further enhanced by the presence of RDX, MarR is not regulated by RDX.


Assuntos
Actinobacteria/genética , Actinobacteria/metabolismo , Substâncias Explosivas/metabolismo , Família Multigênica , Triazinas/metabolismo , Biotransformação , Técnicas de Inativação de Genes , Dados de Sequência Molecular , Oxirredução , Análise de Sequência de DNA
18.
FEMS Microbiol Ecol ; 88(3): 495-502, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24606542

RESUMO

Developing methods to differentiate the relative contributions of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) to ammonia (NH3) oxidation has been challenging due to the lack of compounds that selectively inhibit AOA. In this study, we investigated the effects of specific bacteria- and eukaryote-selective protein synthesis inhibitors on the recovery of acetylene (C2H2)-inactivated NH3 oxidation in the marine AOA Nitrosopumilus maritimus and compared the results with recovery of the AOB Nitrosomonas europaea. C2 H2 irreversibly inhibited N. maritimus NH3 oxidation in a similar manner to what was observed previously with N. europaea. However, cycloheximide (CHX), a widely used eukaryotic protein synthesis inhibitor, but not bacteria-specific protein synthesis inhibitors (kanamycin and gentamycin), inhibited the recovery of NH3-oxidizing activity in N. maritimus. CHX prevented the incorporation of (14)CO2 -labeling into cellular proteins, providing further evidence that CHX acts as a protein synthesis inhibitor in N. maritimus. If the effect of CHX on protein synthesis can be confirmed among other isolates of AOA, the combination of C2H2 inactivation followed by recovery of NH3 oxidation either in the presence of bacteria-selective protein synthesis inhibitors or CHX might be used to estimate the relative contributions of AOB and AOA to NH3 oxidation in natural environments.


Assuntos
Acetileno/farmacologia , Archaea/efeitos dos fármacos , Archaea/metabolismo , Cicloeximida/farmacologia , Inibidores da Síntese de Proteínas/farmacologia , Amônia/metabolismo , Nitrificação , Nitrosomonas europaea/metabolismo , Oxirredução
19.
Microbiology (Reading) ; 159(Pt 10): 2162-2168, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23842468

RESUMO

Due to their adjacent location in the genomes of Desulfovibrio species and their potential for formation of an electron transfer pathway in sulfate-reducing prokaryotes, adenosyl phosphosulfate (APS) reductase (Apr) and quinone-interacting membrane-bound oxidoreductase (Qmo) have been thought to interact together during the reduction of APS. This interaction was recently verified in Desulfovibrio desulfuricans. Membrane proteins of Desulfovibrio vulgaris Hildenborough ΔqmoABCD JW9021, a deletion mutant, were compared to the parent strain using blue-native PAGE to determine whether Qmo formed a complex with Apr or other proteins. In the parent strain of D. vulgaris, a unique band was observed that contained all four Qmo subunits, and another band contained three subunits of Qmo, as well as subunits of AprA and AprB. Similar results were observed with bands excised from membrane preparations of Desulfovibrio alaskensis strain G20. These results are in support of the formation of a physical complex between the two proteins; a result that was further confirmed by the co-purification of QmoA/B and AprA/B from affinity-tagged D. vulgaris Hildenborough strains (AprA, QmoA and QmoB) regardless of which subunit had been tagged. This provides clear evidence for the presence of a Qmo-Apr complex that is at least partially stable in protein extracts of D. vulgaris and D. alaskensis.


Assuntos
Desulfovibrio/química , Desulfovibrio/enzimologia , Proteínas de Membrana/metabolismo , NAD(P)H Desidrogenase (Quinona)/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Multimerização Proteica , Deleção de Genes
20.
Proc Natl Acad Sci U S A ; 110(3): 1006-11, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23277575

RESUMO

The ammonia-oxidizing archaea have recently been recognized as a significant component of many microbial communities in the biosphere. Although the overall stoichiometry of archaeal chemoautotrophic growth via ammonia (NH(3)) oxidation to nitrite (NO(2)(-)) is superficially similar to the ammonia-oxidizing bacteria, genome sequence analyses point to a completely unique biochemistry. The only genomic signature linking the bacterial and archaeal biochemistries of NH(3) oxidation is a highly divergent homolog of the ammonia monooxygenase (AMO). Although the presumptive product of the putative AMO is hydroxylamine (NH(2)OH), the absence of genes encoding a recognizable ammonia-oxidizing bacteria-like hydroxylamine oxidoreductase complex necessitates either a novel enzyme for the oxidation of NH(2)OH or an initial oxidation product other than NH(2)OH. We now show through combined physiological and stable isotope tracer analyses that NH(2)OH is both produced and consumed during the oxidation of NH(3) to NO(2)(-) by Nitrosopumilus maritimus, that consumption is coupled to energy conversion, and that NH(2)OH is the most probable product of the archaeal AMO homolog. Thus, despite their deep phylogenetic divergence, initial oxidation of NH(3) by bacteria and archaea appears mechanistically similar. They however diverge biochemically at the point of oxidation of NH(2)OH, the archaea possibly catalyzing NH(2)OH oxidation using a novel enzyme complex.


Assuntos
Amônia/metabolismo , Archaea/metabolismo , Hidroxilamina/metabolismo , Trifosfato de Adenosina/biossíntese , Organismos Aquáticos/metabolismo , Cinética , Oxirredução , Oxirredutases/metabolismo , Consumo de Oxigênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA