Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Genet ; 55(7): 1138-1148, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37308787

RESUMO

Human genetic studies of smoking behavior have been thus far largely limited to common variants. Studying rare coding variants has the potential to identify drug targets. We performed an exome-wide association study of smoking phenotypes in up to 749,459 individuals and discovered a protective association in CHRNB2, encoding the ß2 subunit of the α4ß2 nicotine acetylcholine receptor. Rare predicted loss-of-function and likely deleterious missense variants in CHRNB2 in aggregate were associated with a 35% decreased odds for smoking heavily (odds ratio (OR) = 0.65, confidence interval (CI) = 0.56-0.76, P = 1.9 × 10-8). An independent common variant association in the protective direction ( rs2072659 ; OR = 0.96; CI = 0.94-0.98; P = 5.3 × 10-6) was also evident, suggesting an allelic series. Our findings in humans align with decades-old experimental observations in mice that ß2 loss abolishes nicotine-mediated neuronal responses and attenuates nicotine self-administration. Our genetic discovery will inspire future drug designs targeting CHRNB2 in the brain for the treatment of nicotine addiction.


Assuntos
Nicotina , Tabagismo , Humanos , Animais , Camundongos , Fumar/genética , Tabagismo/genética , Fenótipo , Razão de Chances
2.
Commun Biol ; 5(1): 540, 2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35661827

RESUMO

To better understand the genetics of hearing loss, we performed a genome-wide association meta-analysis with 125,749 cases and 469,497 controls across five cohorts. We identified 53/c loci affecting hearing loss risk, including common coding variants in COL9A3 and TMPRSS3. Through exome sequencing of 108,415 cases and 329,581 controls, we observed rare coding associations with 11 Mendelian hearing loss genes, including additive effects in known hearing loss genes GJB2 (Gly12fs; odds ratio [OR] = 1.21, P = 4.2 × 10-11) and SLC26A5 (gene burden; OR = 1.96, P = 2.8 × 10-17). We also identified hearing loss associations with rare coding variants in FSCN2 (OR = 1.14, P = 1.9 × 10-15) and KLHDC7B (OR = 2.14, P = 5.2 × 10-30). Our results suggest a shared etiology between Mendelian and common hearing loss in adults. This work illustrates the potential of large-scale exome sequencing to elucidate the genetic architecture of common disorders where both common and rare variation contribute to risk.


Assuntos
Estudo de Associação Genômica Ampla , Perda Auditiva , Exoma/genética , Variação Genética , Estudo de Associação Genômica Ampla/métodos , Perda Auditiva/genética , Humanos , Proteínas de Membrana/genética , Proteínas de Neoplasias/genética , Serina Endopeptidases/genética , Sequenciamento do Exoma
3.
Nat Neurosci ; 22(7): 1066-1074, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31209380

RESUMO

Cannabis is the most frequently used illicit psychoactive substance worldwide; around one in ten users become dependent. The risk for cannabis use disorder (CUD) has a strong genetic component, with twin heritability estimates ranging from 51 to 70%. Here we performed a genome-wide association study of CUD in 2,387 cases and 48,985 controls, followed by replication in 5,501 cases and 301,041 controls. We report a genome-wide significant risk locus for CUD (P = 9.31 × 10-12) that replicates in an independent population (Preplication = 3.27 × 10-3, Pmeta-analysis = 9.09 × 10-12). The index variant (rs56372821) is a strong expression quantitative trait locus for cholinergic receptor nicotinic α2 subunit (CHRNA2); analyses of the genetically regulated gene expression identified a significant association of CHRNA2 expression with CUD in brain tissue. At the polygenic level, analyses revealed a significant decrease in the risk of CUD with increased load of variants associated with cognitive performance. The results provide biological insights and inform on the genetic architecture of CUD.


Assuntos
Abuso de Maconha/genética , Proteínas do Tecido Nervoso/fisiologia , Receptores Nicotínicos/fisiologia , Idade de Início , Alelos , Transtorno do Deficit de Atenção com Hiperatividade/genética , Encéfalo/metabolismo , Estudos de Casos e Controles , Cromossomos Humanos Par 8/genética , Cognição/fisiologia , Estudos de Coortes , Fatores de Confusão Epidemiológicos , Dinamarca , Escolaridade , Feminino , Perfilação da Expressão Gênica , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Islândia , Masculino , Herança Multifatorial , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Receptores Nicotínicos/biossíntese , Receptores Nicotínicos/genética , Esquizofrenia/genética , Fumar/genética , Transcriptoma
4.
PLoS Comput Biol ; 14(3): e1005934, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29494619

RESUMO

Genetic variants underlying complex traits, including disease susceptibility, are enriched within the transcriptional regulatory elements, promoters and enhancers. There is emerging evidence that regulatory elements associated with particular traits or diseases share similar patterns of transcriptional activity. Accordingly, shared transcriptional activity (coexpression) may help prioritise loci associated with a given trait, and help to identify underlying biological processes. Using cap analysis of gene expression (CAGE) profiles of promoter- and enhancer-derived RNAs across 1824 human samples, we have analysed coexpression of RNAs originating from trait-associated regulatory regions using a novel quantitative method (network density analysis; NDA). For most traits studied, phenotype-associated variants in regulatory regions were linked to tightly-coexpressed networks that are likely to share important functional characteristics. Coexpression provides a new signal, independent of phenotype association, to enable fine mapping of causative variants. The NDA coexpression approach identifies new genetic variants associated with specific traits, including an association between the regulation of the OCT1 cation transporter and genetic variants underlying circulating cholesterol levels. NDA strongly implicates particular cell types and tissues in disease pathogenesis. For example, distinct groupings of disease-associated regulatory regions implicate two distinct biological processes in the pathogenesis of ulcerative colitis; a further two separate processes are implicated in Crohn's disease. Thus, our functional analysis of genetic predisposition to disease defines new distinct disease endotypes. We predict that patients with a preponderance of susceptibility variants in each group are likely to respond differently to pharmacological therapy. Together, these findings enable a deeper biological understanding of the causal basis of complex traits.


Assuntos
Predisposição Genética para Doença/genética , Genômica/métodos , Regiões Promotoras Genéticas/genética , Doença de Crohn/genética , Bases de Dados Genéticas , Perfilação da Expressão Gênica , Humanos , Transcriptoma/genética
5.
Arthritis Rheumatol ; 69(4): 735-741, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27788309

RESUMO

OBJECTIVE: In many rheumatoid arthritis (RA) patients, disease is controlled with anti-tumor necrosis factor (anti-TNF) biologic therapies. However, in a significant number of patients, the disease fails to respond to anti-TNF therapy. We undertook the present study to examine the hypothesis that rare and low-frequency genetic variants might influence response to anti-TNF treatment. METHODS: We sequenced the coding region of 750 genes in 1,094 RA patients of European ancestry who were treated with anti-TNF. After quality control, 690 genes were included in the analysis. We applied single-variant association and gene-based association tests to identify variants associated with anti-TNF treatment response. In addition, given the key mechanistic role of TNF, we performed gene set analyses of 27 TNF pathway genes. RESULTS: We identified 14,420 functional variants, of which 6,934 were predicted as nonsynonymous 2,136 of which were further predicted to be "damaging." Despite the fact that the study was well powered, no single variant or gene showed study-wide significant association with change in the outcome measures disease activity or European League Against Rheumatism response. Intriguingly, we observed 3 genes, of 27 with nominal signals of association (P < 0.05), that were involved in the TNF signaling pathway. However, when we performed a rigorous gene set enrichment analysis based on association P value ranking, we observed no evidence of enrichment of association at genes involved in the TNF pathway (Penrichment = 0.15, based on phenotype permutations). CONCLUSION: Our findings suggest that rare and low-frequency protein-coding variants in TNF signaling pathway genes or other genes do not contribute substantially to anti-TNF treatment response in patients with RA.


Assuntos
Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/genética , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Feminino , Variação Genética , Humanos , Masculino , Pessoa de Meia-Idade , Fases de Leitura Aberta , Resultado do Tratamento
6.
Nature ; 506(7488): 376-81, 2014 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-24390342

RESUMO

A major challenge in human genetics is to devise a systematic strategy to integrate disease-associated variants with diverse genomic and biological data sets to provide insight into disease pathogenesis and guide drug discovery for complex traits such as rheumatoid arthritis (RA). Here we performed a genome-wide association study meta-analysis in a total of >100,000 subjects of European and Asian ancestries (29,880 RA cases and 73,758 controls), by evaluating ∼10 million single-nucleotide polymorphisms. We discovered 42 novel RA risk loci at a genome-wide level of significance, bringing the total to 101 (refs 2 - 4). We devised an in silico pipeline using established bioinformatics methods based on functional annotation, cis-acting expression quantitative trait loci and pathway analyses--as well as novel methods based on genetic overlap with human primary immunodeficiency, haematological cancer somatic mutations and knockout mouse phenotypes--to identify 98 biological candidate genes at these 101 risk loci. We demonstrate that these genes are the targets of approved therapies for RA, and further suggest that drugs approved for other indications may be repurposed for the treatment of RA. Together, this comprehensive genetic study sheds light on fundamental genes, pathways and cell types that contribute to RA pathogenesis, and provides empirical evidence that the genetics of RA can provide important information for drug discovery.


Assuntos
Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/genética , Descoberta de Drogas , Predisposição Genética para Doença/genética , Terapia de Alvo Molecular , Alelos , Animais , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Povo Asiático/genética , Estudos de Casos e Controles , Biologia Computacional , Reposicionamento de Medicamentos , Feminino , Estudo de Associação Genômica Ampla , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/metabolismo , Humanos , Masculino , Camundongos , Camundongos Knockout , Polimorfismo de Nucleotídeo Único/genética , População Branca/genética
7.
PLoS Genet ; 9(3): e1003394, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23555300

RESUMO

Anti-tumor necrosis factor alpha (anti-TNF) biologic therapy is a widely used treatment for rheumatoid arthritis (RA). It is unknown why some RA patients fail to respond adequately to anti-TNF therapy, which limits the development of clinical biomarkers to predict response or new drugs to target refractory cases. To understand the biological basis of response to anti-TNF therapy, we conducted a genome-wide association study (GWAS) meta-analysis of more than 2 million common variants in 2,706 RA patients from 13 different collections. Patients were treated with one of three anti-TNF medications: etanercept (n = 733), infliximab (n = 894), or adalimumab (n = 1,071). We identified a SNP (rs6427528) at the 1q23 locus that was associated with change in disease activity score (ΔDAS) in the etanercept subset of patients (P = 8 × 10(-8)), but not in the infliximab or adalimumab subsets (P>0.05). The SNP is predicted to disrupt transcription factor binding site motifs in the 3' UTR of an immune-related gene, CD84, and the allele associated with better response to etanercept was associated with higher CD84 gene expression in peripheral blood mononuclear cells (P = 1 × 10(-11) in 228 non-RA patients and P = 0.004 in 132 RA patients). Consistent with the genetic findings, higher CD84 gene expression correlated with lower cross-sectional DAS (P = 0.02, n = 210) and showed a non-significant trend for better ΔDAS in a subset of RA patients with gene expression data (n = 31, etanercept-treated). A small, multi-ethnic replication showed a non-significant trend towards an association among etanercept-treated RA patients of Portuguese ancestry (n = 139, P = 0.4), but no association among patients of Japanese ancestry (n = 151, P = 0.8). Our study demonstrates that an allele associated with response to etanercept therapy is also associated with CD84 gene expression, and further that CD84 expression correlates with disease activity. These findings support a model in which CD84 genotypes and/or expression may serve as a useful biomarker for response to etanercept treatment in RA patients of European ancestry.


Assuntos
Antígenos CD , Artrite Reumatoide , Biomarcadores Farmacológicos , Estudo de Associação Genômica Ampla , Adulto , Idoso , Alelos , Antígenos CD/genética , Antígenos CD/metabolismo , Antirreumáticos/administração & dosagem , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/fisiopatologia , Povo Asiático/genética , Biomarcadores Farmacológicos/metabolismo , Etanercepte , Feminino , Regulação da Expressão Gênica , Humanos , Imunoglobulina G/administração & dosagem , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Receptores do Fator de Necrose Tumoral/administração & dosagem , Família de Moléculas de Sinalização da Ativação Linfocitária , Fator de Necrose Tumoral alfa , População Branca/genética
8.
PLoS Genet ; 9(12): e1003993, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24385918

RESUMO

Recent work has shown that much of the missing heritability of complex traits can be resolved by estimates of heritability explained by all genotyped SNPs. However, it is currently unknown how much heritability is missing due to poor tagging or additional causal variants at known GWAS loci. Here, we use variance components to quantify the heritability explained by all SNPs at known GWAS loci in nine diseases from WTCCC1 and WTCCC2. After accounting for expectation, we observed all SNPs at known GWAS loci to explain 1.29 x more heritability than GWAS-associated SNPs on average (P=3.3 x 10⁻5). For some diseases, this increase was individually significant: 2.07 x for Multiple Sclerosis (MS) (P=6.5 x 10⁻9) and 1.48 x for Crohn's Disease (CD) (P = 1.3 x 10⁻³); all analyses of autoimmune diseases excluded the well-studied MHC region. Additionally, we found that GWAS loci from other related traits also explained significant heritability. The union of all autoimmune disease loci explained 7.15 x more MS heritability than known MS SNPs (P < 1.0 x 10⁻¹6 and 2.20 x more CD heritability than known CD SNPs (P = 6.1 x 10⁻9), with an analogous increase for all autoimmune diseases analyzed. We also observed significant increases in an analysis of > 20,000 Rheumatoid Arthritis (RA) samples typed on ImmunoChip, with 2.37 x more heritability from all SNPs at GWAS loci (P = 2.3 x 10⁻6) and 5.33 x more heritability from all autoimmune disease loci (P < 1 x 10⁻¹6 compared to known RA SNPs (including those identified in this cohort). Our methods adjust for LD between SNPs, which can bias standard estimates of heritability from SNPs even if all causal variants are typed. By comparing adjusted estimates, we hypothesize that the genome-wide distribution of causal variants is enriched for low-frequency alleles, but that causal variants at known GWAS loci are skewed towards common alleles. These findings have important ramifications for fine-mapping study design and our understanding of complex disease architecture.


Assuntos
Loci Gênicos , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Alelos , Artrite Reumatoide/genética , Doença de Crohn/genética , Humanos , Desequilíbrio de Ligação , Modelos Teóricos , Esclerose Múltipla/genética
9.
Ann Rheum Dis ; 72(8): 1375-81, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23233654

RESUMO

BACKGROUND: Treatment strategies blocking tumour necrosis factor (anti-TNF) have proven very successful in patients with rheumatoid arthritis (RA). However, a significant subset of patients does not respond for unknown reasons. Currently, there are no means of identifying these patients before treatment. This study was aimed at identifying genetic factors predicting anti-TNF treatment outcome in patients with RA using a genome-wide association approach. METHODS: We conducted a multistage, genome-wide association study with a primary analysis of 2 557 253 single-nucleotide polymorphisms (SNPs) in 882 patients with RA receiving anti-TNF therapy included through the Dutch Rheumatoid Arthritis Monitoring (DREAM) registry and the database of Apotheekzorg. Linear regression analysis of changes in the Disease Activity Score in 28 joints after 14 weeks of treatment was performed using an additive model. Markers with p<10(-3) were selected for replication in 1821 patients from three independent cohorts. Pathway analysis including all SNPs with p<10(-3) was performed using Ingenuity. RESULTS: 772 markers showed evidence of association with treatment outcome in the initial stage. Eight genetic loci showed improved p value in the overall meta-analysis compared with the first stage, three of which (rs1568885, rs1813443 and rs4411591) showed directional consistency over all four cohorts studied. We were unable to replicate markers previously reported to be associated with anti-TNF outcome. Network analysis indicated strong involvement of biological processes underlying inflammatory response and cell morphology. CONCLUSIONS: Using a multistage strategy, we have identified eight genetic loci associated with response to anti-TNF treatment. Further studies are required to validate these findings in additional patient collections.


Assuntos
Artrite Reumatoide/genética , Resistência a Medicamentos/genética , Marcadores Genéticos , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Adalimumab , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais Humanizados/uso terapêutico , Antirreumáticos/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/patologia , Análise Mutacional de DNA , Etanercepte , Feminino , Regulação da Expressão Gênica , Humanos , Imunoglobulina G/uso terapêutico , Infliximab , Masculino , Receptores do Fator de Necrose Tumoral/uso terapêutico , Sistema de Registros
10.
Am J Hum Genet ; 90(3): 524-32, 2012 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-22365150

RESUMO

We have previously shown that rheumatoid arthritis (RA) risk alleles overlap between different ethnic groups. Here, we utilize a multiethnic approach to show that we can effectively discover RA risk alleles. Thirteen putatively associated SNPs that had not yet exceeded genome-wide significance (p < 5 × 10(-8)) in our previous RA genome-wide association study (GWAS) were analyzed in independent sample sets consisting of 4,366 cases and 17,765 controls of European, African American, and East Asian ancestry. Additionally, we conducted an overall association test across all 65,833 samples (a GWAS meta-analysis plus the replication samples). Of the 13 SNPs investigated, four were significantly below the study-wide Bonferroni corrected p value threshold (p < 0.0038) in the replication samples. Two SNPs (rs3890745 at the 1p36 locus [p = 2.3 × 10(-12)] and rs2872507 at the 17q12 locus [p = 1.7 × 10(-9)]) surpassed genome-wide significance in all 16,659 RA cases and 49,174 controls combined. We used available GWAS data to fine map these two loci in Europeans and East Asians, and we found that the same allele conferred risk in both ethnic groups. A series of bioinformatic analyses identified TNFRSF14-MMEL1 at the 1p36 locus and IKZF3-ORMDL3-GSDMB at the 17q12 locus as the genes most likely associated with RA. These findings demonstrate empirically that a multiethnic approach is an effective strategy for discovering RA risk loci, and they suggest that combining GWASs across ethnic groups represents an efficient strategy for gaining statistical power.


Assuntos
Artrite Reumatoide/etnologia , Artrite Reumatoide/genética , Cromossomos Humanos Par 17 , Cromossomos Humanos Par 1 , Loci Gênicos , Alelos , Estudos de Casos e Controles , Biologia Computacional/métodos , Etnicidade/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla/métodos , Genótipo , Humanos , Fator de Transcrição Ikaros/genética , Desequilíbrio de Ligação , Proteínas de Membrana/genética , Proteínas de Neoplasias/genética , Neprilisina/genética , Polimorfismo de Nucleotídeo Único , Membro 14 de Receptores do Fator de Necrose Tumoral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA