Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2608: 365-387, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36653718

RESUMO

Collective cell migration is crucial for a variety of pathophysiological processes including embryonic development, wound healing, carcinoma invasion, and sprouting angiogenesis. The behavior of leading and following cells during migration is highly dynamic and involves extensive cellular morphological changes mediated by the actin cytoskeleton. Imaging these rapid and dynamic changes over time requires expression of fluorescent proteins and/or live labeling with fluorescent probes, followed by acquiring series of image stacks at short intervals. This presents significant challenges related to dye cytotoxicity, signal loss, and in particular phototoxicity resulting from repeated irradiation, especially when using separate channels for multiple dyes and when imaging large z-stacks at short time intervals. In this chapter, we present methods for multicolor live-cell labeling of primary human endothelial cell populations, followed by multi-position time-lapse imaging in 2D and in 3D protein matrices. These approaches can be performed in combination with RNA interference to suppress the expression of specific proteins, as well as in mosaic assays using mixtures of differentially labeled cell populations. Finally, we present a protocol for long-term imaging at low laser intensity to minimize laser-induced cell damage, followed by post-imaging signal enhancement using artificial intelligence.


Assuntos
Inteligência Artificial , Citoesqueleto , Humanos , Movimento Celular , Citoesqueleto de Actina/metabolismo , Diagnóstico por Imagem
2.
Adv Biol (Weinh) ; 5(11): e2100954, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34590440

RESUMO

This study provides a method to assess the impact of circulating plasma factors on microvascular integrity by using a recently developed microvessel-on-a-chip platform featuring the human endothelium that is partly surrounded by the extracellular matrix. The system is high-throughput, which allows parallel analysis of organ-level microvessel pathophysiology, including vascular leakage. Ethylenediaminetetraacetic acid plasma samples are mixed with inhibitors for recalcification of the plasma samples to avoid activation of the coagulation- or complement system. Moreover, the assay is validated by spiking vascular endothelial growth factor, histamine, or tumor necrosis factor alpha to recalcified plasma and confirms their modulation of microvessel barrier function at physiologically relevant concentrations. Finally, this study shows that perfusing the microvessels with recalcified plasma samples of coronavirus disease-2019 patients, with a confirmed proinflammatory profile, results in markedly increased leakage of the microvessels. The assay provides opportunities for diagnostic screening of inflammatory or endothelial disrupting plasma factors associated with endothelial dysfunction.


Assuntos
COVID-19 , Microfluídica , Endotélio Vascular , Humanos , Plasma , SARS-CoV-2 , Fator A de Crescimento do Endotélio Vascular
3.
Eur J Endocrinol ; 185(4): 539-552, 2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34342596

RESUMO

OBJECTIVE: Sex steroid hormones like estrogens have a key role in the regulation of energy homeostasis and metabolism. In transwomen, gender-affirming hormone therapy like estradiol (in combination with antiandrogenic compounds) could affect metabolism as well. Given that the underlying pathophysiological mechanisms are not fully understood, this study assessed circulating estradiol-driven microRNAs (miRs) in transwomen and their regulation of genes involved in metabolism in mice. METHODS: Following plasma miR-sequencing (seq) in a transwomen discovery (n = 20) and validation cohort (n = 30), we identified miR-224 and miR-452. Subsequent systemic silencing of these miRs in male C57Bl/6 J mice (n = 10) was followed by RNA-seq-based gene expression analysis of brown and white adipose tissue in conjunction with mechanistic studies in cultured adipocytes. RESULTS: Estradiol in transwomen lowered plasma miR-224 and -452 carried in extracellular vesicles (EVs) while their systemic silencing in mice and cultured adipocytes increased lipogenesis (white adipose) but reduced glucose uptake and mitochondrial respiration (brown adipose). In white and brown adipose tissue, differentially expressed (miR target) genes are associated with lipogenesis (white adipose) and mitochondrial respiration and glucose uptake (brown adipose). CONCLUSION: This study identified an estradiol-drive post-transcriptional network that could potentially offer a mechanistic understanding of metabolism following gender-affirming estradiol therapy.


Assuntos
Micropartículas Derivadas de Células/genética , Estradiol/fisiologia , MicroRNAs/genética , Transexualidade , Adipócitos/efeitos dos fármacos , Adipócitos/fisiologia , Adipogenia/efeitos dos fármacos , Adipogenia/genética , Adulto , Animais , Micropartículas Derivadas de Células/efeitos dos fármacos , Micropartículas Derivadas de Células/metabolismo , Estudos de Coortes , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/genética , Estradiol/sangue , Estradiol/farmacologia , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Terapia de Reposição Hormonal , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Interferência de RNA/efeitos dos fármacos , Pessoas Transgênero , Transexualidade/genética , Transexualidade/metabolismo , Adulto Jovem
4.
Int J Biochem Cell Biol ; 134: 105960, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33636396

RESUMO

Netrin-4, recognized in neural and vascular development, is highly expressed by mature endothelial cells. The function of this netrin-4 in vascular biology after development has remained unclear. We found that the expression of netrin-4 is highly regulated in endothelial cells and is important for quiescent healthy endothelium. Netrin-4 expression is upregulated in endothelial cells cultured under laminar flow conditions, while endothelial cells stimulated with tumor necrosis factor alpha resulted in decreased netrin-4 expression. Targeted reduction of netrin-4 in endothelial cells resulted in increased expression of vascular cell adhesion molecule 1 and intercellular adhesion molecule 1. Besides, these endothelial cells were more prone to monocyte adhesion and showed impaired barrier function, measured with electric cell-substrate impedance sensing, as well as in an 'organ-on-a-chip' microfluidic system. Importantly, endothelial cells with reduced levels of netrin-4 showed increased expression of the senescence-associated markers cyclin-dependent kinase inhibitor-1 and -2A, an increased cell size and decreased ability to proliferate. Consistent with the gene expression profile, netrin-4 reduction was accompanied with more senescent associated ß-galactosidase activity, which could be rescued by adding netrin-4 protein. Finally, using human decellularized kidney extracellular matrix scaffolds, we found that pre-treatment of the scaffolds with netrin-4 increased numbers of endothelial cells adhering to the matrix, showing a pro-survival effect of netrin-4. Taken together, netrin-4 acts as an anti-senescence and anti-inflammation factor in endothelial cell function and our results provide insights as to maintain endothelial homeostasis and supporting vascular health.


Assuntos
Endotélio Vascular/metabolismo , Inflamação/prevenção & controle , Netrinas/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo , Células Cultivadas , Senescência Celular/fisiologia , Endotélio Vascular/patologia , Humanos , Inflamação/metabolismo , Inflamação/patologia , Netrinas/genética
5.
Elife ; 92020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32749215

RESUMO

TNFα signaling in the vascular endothelium elicits multiple inflammatory responses that drive vascular destabilization and leakage. Bioactive lipids are main drivers of these processes. In vitro mechanistic studies of bioactive lipids have been largely based on two-dimensional endothelial cell cultures that, due to lack of laminar flow and the growth of the cells on non-compliant stiff substrates, often display a pro-inflammatory phenotype. This complicates the assessment of inflammatory processes. Three-dimensional microvessels-on-a-chip models provide a unique opportunity to generate endothelial microvessels in a more physiological environment. Using an optimized targeted liquid chromatography-tandem mass spectrometry measurements of a panel of pro- and anti-inflammatory bioactive lipids, we measure the profile changes upon administration of TNFα. We demonstrate that bioactive lipid profiles can be readily detected from three-dimensional microvessels-on-a-chip and display a more dynamic, less inflammatory response to TNFα, that resembles more the human situation, compared to classical two-dimensional endothelial cell cultures.


In a range of conditions called autoimmune diseases, the immune system attacks the body rather than foreign elements. This can cause inflammation that is harmful for many organs. In particular, immune cells can produce excessive amounts of a chemical messenger called tumor necrosis factor alpha (TNFα for short), which can lead to the release of fatty molecules that damage blood vessels. This process is normally studied in blood vessels cells that are grown on a dish, without any blood movement. However, in this rigid 2D environment, the cells become 'stressed' and show higher levels of inflammation than in the body. This makes it difficult to assess the exact role that TNFα plays in disease. A new technology is addressing this issue by enabling scientist to culture blood vessels cells in dishes coated with gelatin. This allows the cells to organize themselves in 3D, creating tiny blood vessels in which fluids can flow. However, it was unclear whether these 'microvessels-on-a-chip' were better models to study the role of TNFα compared to cells grown on a plate. Here, Junaid et al. compared the levels of inflammation in blood vessels cells grown in the two environments, showing that cells are less inflamed when they are cultured in 3D. In addition, when the artificial 3D-blood vessels were exposed to TNFα, they responded more like real blood vessels than the 2D models. Finally, experiments showed that it was possible to monitor the release of fatty molecules in this environment. Together, this work suggests that microvessels-on-a-chip are better models to study how TNFα harms blood vessels. Next, systems and protocols could be develop to allow automated mass drug testing in microvessels-on-a-chip. This would help scientists to quickly screen thousands of drugs and find candidates that can protect blood vessels from TNFα.


Assuntos
Endotélio Vascular/efeitos dos fármacos , Microvasos/efeitos dos fármacos , Fator de Necrose Tumoral alfa/administração & dosagem , Cromatografia Líquida , Endotélio Vascular/fisiologia , Humanos , Microvasos/fisiologia , Espectrometria de Massas em Tandem
6.
Int J Mol Sci ; 21(13)2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32645937

RESUMO

To advance pre-clinical vascular drug research, in vitro assays are needed that closely mimic the process of angiogenesis in vivo. Such assays should combine physiological relevant culture conditions with robustness and scalability to enable drug screening. We developed a perfused 3D angiogenesis assay that includes endothelial cells (ECs) from induced pluripotent stem cells (iPSC) and assessed its performance and suitability for anti-angiogenic drug screening. Angiogenic sprouting was compared with primary ECs and showed that the microvessels from iPSC-EC exhibit similar sprouting behavior, including tip cell formation, directional sprouting and lumen formation. Inhibition with sunitinib, a clinically used vascular endothelial growth factor (VEGF) receptor type 2 inhibitor, and 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO), a transient glycolysis inhibitor, both significantly reduced the sprouting of both iPSC-ECs and primary ECs, supporting that both cell types show VEGF gradient-driven angiogenic sprouting. The assay performance was quantified for sunitinib, yielding a minimal signal window of 11 and Z-factor of at least 0.75, both meeting the criteria to be used as screening assay. In conclusion, we have developed a robust and scalable assay that includes physiological relevant culture conditions and is amenable to screening of anti-angiogenic compounds.


Assuntos
Inibidores da Angiogênese/farmacologia , Bioensaio/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Endotélio/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Neovascularização Patológica/tratamento farmacológico , Neovascularização Fisiológica/efeitos dos fármacos , Técnicas de Cultura de Células/métodos , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Endotélio/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Microvasos/efeitos dos fármacos , Microvasos/metabolismo , Neovascularização Patológica/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
7.
J Exp Med ; 213(7): 1163-74, 2016 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-27325888

RESUMO

Pseudo-TORCH syndrome (PTS) is characterized by microcephaly, enlarged ventricles, cerebral calcification, and, occasionally, by systemic features at birth resembling the sequelae of congenital infection but in the absence of an infectious agent. Genetic defects resulting in activation of type 1 interferon (IFN) responses have been documented to cause Aicardi-Goutières syndrome, which is a cause of PTS. Ubiquitin-specific peptidase 18 (USP18) is a key negative regulator of type I IFN signaling. In this study, we identified loss-of-function recessive mutations of USP18 in five PTS patients from two unrelated families. Ex vivo brain autopsy material demonstrated innate immune inflammation with calcification and polymicrogyria. In vitro, patient fibroblasts displayed severely enhanced IFN-induced inflammation, which was completely rescued by lentiviral transduction of USP18. These findings add USP18 deficiency to the list of genetic disorders collectively termed type I interferonopathies. Moreover, USP18 deficiency represents the first genetic disorder of PTS caused by dysregulation of the response to type I IFNs. Therapeutically, this places USP18 as a promising target not only for genetic but also acquired IFN-mediated CNS disorders.


Assuntos
Doenças Autoimunes do Sistema Nervoso , Encéfalo/imunologia , Calcinose , Endopeptidases/deficiência , Imunidade Inata , Interferon Tipo I/imunologia , Microglia/imunologia , Malformações do Sistema Nervoso , Transdução de Sinais , Doenças Autoimunes do Sistema Nervoso/genética , Doenças Autoimunes do Sistema Nervoso/imunologia , Doenças Autoimunes do Sistema Nervoso/patologia , Encéfalo/patologia , Calcinose/genética , Calcinose/imunologia , Calcinose/patologia , Endopeptidases/imunologia , Feminino , Humanos , Interferon Tipo I/genética , Masculino , Microglia/patologia , Malformações do Sistema Nervoso/genética , Malformações do Sistema Nervoso/imunologia , Malformações do Sistema Nervoso/patologia , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Ubiquitina Tiolesterase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA