Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Psychiatry ; 26(1): 322-340, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-31723242

RESUMO

Cranial radiotherapy in children has detrimental effects on cognition, mood, and social competence in young cancer survivors. Treatments harnessing hippocampal neurogenesis are currently of great relevance in this context. Lithium, a well-known mood stabilizer, has both neuroprotective, pro-neurogenic as well as antitumor effects, and in the current study we introduced lithium treatment 4 weeks after irradiation. Female mice received a single 4 Gy whole-brain radiation dose on postnatal day (PND) 21 and were randomized to 0.24% Li2CO3 chow or normal chow from PND 49 to 77. Hippocampal neurogenesis was assessed on PND 77, 91, and 105. We found that lithium treatment had a pro-proliferative effect on neural progenitors, but neuronal integration occurred only after it was discontinued. Also, the treatment ameliorated deficits in spatial learning and memory retention observed in irradiated mice. Gene expression profiling and DNA methylation analysis identified two novel factors related to the observed effects, Tppp, associated with microtubule stabilization, and GAD2/65, associated with neuronal signaling. Our results show that lithium treatment reverses irradiation-induced loss of hippocampal neurogenesis and cognitive impairment even when introduced long after the injury. We propose that lithium treatment should be intermittent in order to first make neural progenitors proliferate and then, upon discontinuation, allow them to differentiate. Our findings suggest that pharmacological treatment of cognitive so-called late effects in childhood cancer survivors is possible.


Assuntos
Cognição/efeitos dos fármacos , Compostos de Lítio/farmacologia , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/efeitos da radiação , Animais , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/prevenção & controle , Feminino , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Neurogênese/efeitos dos fármacos
2.
Sci Rep ; 10(1): 9367, 2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32518293

RESUMO

Accumulating evidence suggests that gestational exposure to endocrine disrupting chemicals (EDCs) may interfere with normal brain development and predispose for later dysfunctions. The current study focuses on the exposure impact of mixtures of EDCs that better mimics the real-life situation. We herein describe a mixture of phthalates, pesticides and bisphenol A (mixture N1) detected in pregnant women of the SELMA cohort and associated with language delay in their children. To study the long-term impact of developmental exposure to N1 on brain physiology and behavior we administered this mixture to mice throughout gestation at doses 0×, 0.5×, 10×, 100× and 500× the geometric mean of SELMA mothers' concentrations, and examined their offspring in adulthood. Mixture N1 exposure increased active coping during swimming stress in both sexes, increased locomotion and reduced social interaction in male progeny. The expression of corticosterone receptors, their regulator Fkbp5, corticotropin releasing hormone and its receptor, oxytocin and its receptor, estrogen receptor beta, serotonin receptors (Htr1a, Htr2a) and glutamate receptor subunit Grin2b, were modified in the limbic system of adult animals, in a region-specific, sexually-dimorphic and experience-dependent manner. Principal component analysis revealed gene clusters associated with the observed behavioral responses, mostly related to the stress axis. This integration of epidemiology-based data with an experimental model increases the evidence that prenatal exposure to EDC mixtures impacts later life brain functions.


Assuntos
Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/crescimento & desenvolvimento , Disruptores Endócrinos/toxicidade , Poluentes Ambientais/toxicidade , Transcrição Gênica/efeitos dos fármacos , Glândulas Suprarrenais/efeitos dos fármacos , Glândulas Suprarrenais/crescimento & desenvolvimento , Glândulas Suprarrenais/metabolismo , Animais , Feminino , Hormônios/metabolismo , Masculino , Tamanho do Órgão/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos
3.
Physiol Behav ; 215: 112791, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31870943

RESUMO

Exposure to early life stress affects the development and function of the brain and when followed by adversities in adulthood, the negative effects of stress are enhanced. Microglia has been proposed as a potential mediator of this phenomenon. In the present study, we investigated the long-term effects of mild early life stress, the consequences of a stressor in adulthood as well as their interaction on microglial and cytokine (PPARγ, IL-1ß and TNFα) levels in the brain of adult male rats. As an early life stress we used a model of maternal neglect, in which the dam is present but non-accessible to the pup for 15 min during postnatal days 10-13; as a stressor in adulthood we exposed animals to chronic social defeat (CSD) for 3 weeks. We determined in the hippocampus, prefrontal cortex and amygdala, the number of Iba-1+ microglial cells, the number of PPARγ+ cells as well as the relative expression of PPARγ, IL-1ß and TNFα mRNA by qPCR. Following exposure to CSD, the number of Iba-1+ cells was increased in the hippocampus and the prefrontal cortex of adult animals exposed to mild early life stress, while in the absence of CSD no such difference was observed. Moreover, following CSD PPARγ levels were increased in the hippocampus of adult males exposed as neonates to "maternal neglect". Our findings support the notion that early life stress, even a mild one, primes microglia and enhances its reactivity to a second stressful event, later in life, in accord with the "two-hit" hypothesis.


Assuntos
Química Encefálica , Encéfalo/patologia , Citocinas/metabolismo , Microglia/patologia , Angústia Psicológica , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Criança , Maus-Tratos Infantis/psicologia , Humanos , Interleucina-1beta/metabolismo , Masculino , Privação Materna , Aprendizagem em Labirinto , Proteínas dos Microfilamentos/metabolismo , PPAR gama/metabolismo , Ratos , Derrota Social , Fator de Necrose Tumoral alfa/metabolismo
4.
Sci Rep ; 9(1): 6424, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-31015488

RESUMO

The increasing concern for the reproductive toxicity of abundantly used phthalates requires reliable tools for exposure risk assessment to mixtures of chemicals, based on real life human exposure and disorder-associated epidemiological evidence. We herein used a mixture of four phthalate monoesters (33% mono-butyl phthalate, 16% mono-benzyl phthalate, 21% mono-ethyl hexyl phthalate, and 30% mono-isononyl phthalate), detected in 1st trimester urine of 194 pregnant women and identified as bad actors for a shorter anogenital distance (AGD) in their baby boys. Mice were treated with 0, 0.26, 2.6 and 13 mg/kg/d of the mixture, corresponding to 0x, 10x, 100x, 500x levels detected in the pregnant women. Adverse outcomes detected in the reproductive system of the offspring in pre-puberty and adulthood included reduced AGD index and gonadal weight, changes in gonadal histology and altered expression of key regulators of gonadal growth and steroidogenesis. Most aberrations were apparent in both sexes, though more pronounced in males, and exhibited a non-monotonic pattern. The phthalate mixture directly affected expression of steroidogenesis as demonstrated in a relevant in vitro model. The detected adversities at exposures close to the levels detected in pregnant women, raise concern on the existing safety limits for early-life human exposures and emphasizes the need for re-evaluation of the exposure risk.


Assuntos
Poluentes Ambientais/toxicidade , Expressão Gênica/efeitos dos fármacos , Exposição Materna , Ovário/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Testículo/efeitos dos fármacos , Animais , Aromatase/genética , Aromatase/metabolismo , Dibutilftalato/toxicidade , Dietilexilftalato/análogos & derivados , Dietilexilftalato/toxicidade , Estradiol/sangue , Feminino , Proteína Forkhead Box L2/genética , Proteína Forkhead Box L2/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Tamanho do Órgão/efeitos dos fármacos , Ovário/metabolismo , Ovário/fisiopatologia , Ácidos Ftálicos/toxicidade , Gravidez , Primeiro Trimestre da Gravidez , Efeitos Tardios da Exposição Pré-Natal/genética , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Receptores do FSH/genética , Receptores do FSH/metabolismo , Receptores do LH/genética , Receptores do LH/metabolismo , Esteroide 17-alfa-Hidroxilase/genética , Esteroide 17-alfa-Hidroxilase/metabolismo , Testículo/metabolismo , Testículo/fisiopatologia , Testosterona/sangue
5.
Glia ; 64(5): 763-79, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26712314

RESUMO

The central nervous system has limited capacity for regeneration after traumatic injury. Transplantation of neural stem/progenitor cells (NPCs) has been proposed as a potential therapeutic approach while insulin-like growth factor I (IGF-I) has neuroprotective properties following various experimental insults to the nervous system. We have previously shown that NPCs transduced with a lentiviral vector for IGF-I overexpression have an enhanced ability to give rise to neurons in vitro but also in vivo, upon transplantation in a mouse model of temporal lobe epilepsy. Here we studied the regenerative potential of NPCs, IGF-I-transduced or not, in a mouse model of hippocampal mechanical injury. NPC transplantation, with or without IGF-I transduction, rescued the injury-induced spatial learning deficits as revealed in the Morris Water Maze. Moreover, it had beneficial effects on the host tissue by reducing astroglial activation and microglial/macrophage accumulation while enhancing generation of endogenous oligodendrocyte precursor cells. One or two months after transplantation the grafted NPCs had migrated towards the lesion site and in the neighboring myelin-rich regions. Transplanted cells differentiated toward the oligodendroglial, but not the neuronal or astrocytic lineages, expressing the early and late oligodendrocyte markers NG2, Olig2, and CNPase. The newly generated oligodendrocytes reached maturity and formed myelin internodes. Our current and previous observations illustrate the high plasticity of transplanted NPCs which can acquire injury-dependent phenotypes within the host CNS, supporting the fact that reciprocal interactions between transplanted cells and the host tissue are an important factor to be considered when designing prospective cell-based therapies for CNS degenerative conditions.


Assuntos
Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/cirurgia , Diferenciação Celular/fisiologia , Inflamação/etiologia , Deficiências da Aprendizagem/etiologia , Oligodendroglia/fisiologia , Transplante de Células-Tronco/métodos , 2',3'-Nucleotídeo Cíclico Fosfodiesterases/metabolismo , Animais , Animais Recém-Nascidos , Antígenos/metabolismo , Antígenos CD/metabolismo , Lesões Encefálicas Traumáticas/patologia , Modelos Animais de Doenças , Hipocampo/metabolismo , Hipocampo/patologia , Inflamação/cirurgia , Antígeno Ki-67/metabolismo , Deficiências da Aprendizagem/cirurgia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Neurais/fisiologia , Neurogênese/fisiologia , Proteoglicanas/metabolismo
6.
Brain Struct Funct ; 221(8): 4141-4157, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-26642796

RESUMO

Aversive early life experiences in humans have been shown to result in deficits in the function of the prefrontal cortex (PFC). In an effort to elucidate possible neurobiological mechanisms involved, we investigated in rats, the effects of a mildly aversive early experience on PFC structure and function. The early experience involved exposure of rat pups during postnatal days (PND) 10-13 to a T-maze in which they search for their mother, but upon finding her are prohibited contact with her, thus being denied the expected reward (DER). We found that the DER experience resulted in adulthood in impaired PFC function, as assessed by two PFC-dependent behavioral tests [attention set-shifting task (ASST) and fear extinction]. In the ASST, DER animals showed deficits specifically in the intra-dimensional reversal shifts and a lower activation-as determined by c-Fos immunohistochemistry-of the medial orbital cortex (MO), a PFC subregion involved in this aspect of the task. Furthermore, the DER experience resulted in decreased glutamatergic neuron and dendritic spine density in the MO and infralimbic cortex (IL) in the adult brain. The decreased neuronal density was detected as early as PND12 and was accompanied by increased micro- and astroglia-density in the MO/IL.


Assuntos
Comportamento Animal , Privação Materna , Neurônios/fisiologia , Córtex Pré-Frontal/fisiopatologia , Animais , Atenção/fisiologia , Contagem de Células , Espinhas Dendríticas/fisiologia , Extinção Psicológica/fisiologia , Medo/fisiologia , Feminino , Masculino , Neurônios/metabolismo , Córtex Pré-Frontal/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Wistar , Recompensa
7.
Psychoneuroendocrinology ; 52: 212-28, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25486578

RESUMO

In the present study we investigated the neurobiological mechanisms underlying expression of maternal behavior. Increased maternal behavior was experimentally induced by a brief 15-min separation between the mother and the pups during postnatal days 1 to 22. On postnatal days (PND) 12 and 22, we determined in experimental and control dams levels of anxiety in the elevated plus maze (EPM) as well as the levels of receptors for estrogens (ERα, ERß), oxytocin (OTR) and serotonin (5-HT1AR) in areas of the limbic system (prefrontal cortex-PFC, hippocampus, lateral septum-SL, medial preoptic area-MPOA, shell of nucleus accumbens-nAc-Sh, central-CeA and basolateral-BLA amygdala), involved in the regulation of maternal behavior. Experimental dams, which showed increased maternal behavior towards their offspring, displayed reduced anxiety in the EPM on both PND12 and PND22. These behavioral differences could be attributed to neurochemical alterations in their brain: On both PND12 and PND22, experimental mothers had higher levels of ERα and OTRs in the PFC, hippocampus, CeA, SL, MPOA and nAc-Sh. The experimental manipulation-induced increase in ERß levels was less widespread, being localized in PFC, the hippocampal CA2 area, MPOA and nAc-Sh. In addition, 5-HT1ARs were reduced in the PFC, hippocampus, CeA, MPOA and nAc-Sh of the experimental mothers. Our results show that the experience of the daily repeated brief separation from the pups results in increased brain ERs and OTRs, as well as decreased 5-HT1ARs in the dam's brain; these neurochemical changes could underlie the observed increase in maternal behavior and the reduction of anxiety.


Assuntos
Ansiedade/metabolismo , Comportamento Animal/fisiologia , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/metabolismo , Sistema Límbico/metabolismo , Comportamento Materno/fisiologia , Receptor 5-HT1A de Serotonina/metabolismo , Receptores de Ocitocina/metabolismo , Animais , Animais Recém-Nascidos , Feminino , Masculino , Ratos , Ratos Wistar
8.
Psychoneuroendocrinology ; 38(9): 1757-71, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23490071

RESUMO

Early experiences affect brain development and thus adult brain function and behavior. We employed a novel early experience model involving denial (DER) or receipt of expected reward (RER) through maternal contact in a T-maze. Exposure to the DER experience for the first time, on postnatal day 10 (PND10), was stressful for the pups, as assessed by increased corticosterone levels, and was accompanied by enhanced activation of the amygdala, as assessed by c-Fos immunohistochemistry. Re-exposure to the same experience on days 11-13 led to adaptation. Corticosterone levels of the RER pups did not differ on the first and last days of training (PND10 and 13 respectively), while on PND11 and 12 they were lower than those of the CTR. The RER experience did not lead to activation of the amygdala. Males and females exposed as neonates to the DER or RER experience, and controls were tested as adults in the open field task (OF), the elevated plus maze (EPM), and cued and contextual fear conditioning (FC). No group differences were found in the EPM, while in the OF, both male and female DER animals, showed increased rearings, compared to the controls. In the FC, the RER males had increased memory for both context and cued conditioned fear, than either the DER or CTR. On the other hand, the DER males, but not females showed an increased activation, as assessed by c-Fos expression, of the amygdala following fear conditioning. Our results show that the DER early experience programmed the function of the adult amygdala as to render it more sensitive to fearful stimuli. This programming by the DER early experience could be mediated through epigenetic modifications of histones leading to chromatin opening, as indicated by our results showing increased levels of phospho-acetyl-histone-3 in the amygdala of the DER males.


Assuntos
Tonsila do Cerebelo/crescimento & desenvolvimento , Comportamento Materno/fisiologia , Privação Materna , Recompensa , Caracteres Sexuais , Acetilação , Adaptação Psicológica , Tonsila do Cerebelo/fisiologia , Animais , Animais Recém-Nascidos , Condicionamento Clássico , Corticosterona/análise , Sinais (Psicologia) , Eletrochoque , Epigênese Genética , Comportamento Exploratório/fisiologia , Medo/fisiologia , Feminino , Reação de Congelamento Cataléptica/fisiologia , Histonas/metabolismo , Masculino , Aprendizagem em Labirinto/fisiologia , Fosforilação , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas c-fos/análise , Ratos , Ratos Wistar
9.
Stem Cells Transl Med ; 2(3): 185-98, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23417642

RESUMO

Temporal lobe epilepsy (TLE) is a major neurological disease, often associated with cognitive decline. Since approximately 30% of patients are resistant to antiepileptic drugs, TLE is being considered as a possible clinical target for alternative stem cell-based therapies. Given that insulin-like growth factor I (IGF-I) is neuroprotective following a number of experimental insults to the nervous system, we investigated the therapeutic potential of neural stem/precursor cells (NSCs) transduced, or not, with a lentiviral vector for overexpression of IGF-I after transplantation in a mouse model of kainic acid (KA)-induced hippocampal degeneration, which represents an animal model of TLE. Exposure of mice to the Morris water maze task revealed that unilateral intrahippocampal NSC transplantation significantly prevented the KA-induced cognitive decline. Moreover, NSC grafting protected against neurodegeneration at the cellular level, reduced astrogliosis, and maintained endogenous granule cell proliferation at normal levels. In some cases, as in the reduction of hippocampal cell loss and the reversal of the characteristic KA-induced granule cell dispersal, the beneficial effects of transplanted NSCs were manifested earlier and were more pronounced when these were transduced to express IGF-I. However, differences became less pronounced by 2 months postgrafting, since similar amounts of IGF-I were detected in the hippocampi of both groups of mice that received cell transplants. Grafted NSCs survived, migrated, and differentiated into neurons-including glutamatergic cells-and not glia, in the host hippocampus. Our results demonstrate that transplantation of IGF-I producing NSCs is neuroprotective and restores cognitive function following KA-induced hippocampal degeneration.


Assuntos
Cognição , Epilepsia do Lobo Temporal/terapia , Terapia Genética/métodos , Hipocampo/cirurgia , Ácido Caínico , Degeneração Neural , Células-Tronco Neurais/transplante , Neurogênese , Neurônios/patologia , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Comportamento Animal , Movimento Celular , Proliferação de Células , Sobrevivência Celular , Modelos Animais de Doenças , Epilepsia do Lobo Temporal/induzido quimicamente , Epilepsia do Lobo Temporal/genética , Epilepsia do Lobo Temporal/metabolismo , Epilepsia do Lobo Temporal/patologia , Epilepsia do Lobo Temporal/fisiopatologia , Epilepsia do Lobo Temporal/psicologia , Vetores Genéticos , Ácido Glutâmico/metabolismo , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Hipocampo/metabolismo , Hipocampo/patologia , Hipocampo/fisiopatologia , Fator de Crescimento Insulin-Like I/biossíntese , Fator de Crescimento Insulin-Like I/genética , Lentivirus/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo , Esferoides Celulares , Fatores de Tempo , Transdução Genética
10.
Neurobiol Learn Mem ; 91(1): 2-12, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18840534

RESUMO

Mother-pup interactions constitute an important component of environmental stimulation of the offspring during the neonatal period. Employing maternal contact as either a positive reinforcer or, its denial, as a frustrative, non-rewarding stimulus, we developed a novel experimental paradigm involving learning by rat neonates of a T-maze. When trained under the reward of maternal contact during postnatal days 10-13 Wistar rat pups learned the choice leading to the mother in a T-maze. When tested 2h later, in the absence of the mother, pups showed a clear preference for the arm of the T-maze leading to the position of the mother during training. Furthermore, pups receiving the expected reward of maternal contact had higher numbers of c-Fos immunopositive cells in the dorsal striatum compared to either naïve or pups denied the expected reward. The above behavioral and cellular results indicate that pups receiving the expected reward developed a procedural-like memory. When trained under frustrative non-reward pups learned to make the correct choice in the T-maze, albeit less efficiently than pups receiving the expected reward. Following this training condition c-Fos immunohistochemistry revealed increased activation of the CA1 area of the hippocampus and the orbitofrontal cortex. Expression of the information learned by the pups denied the expected reward was contingent upon the presence of the mother in the experimental setup in exactly the same configuration as during the training.


Assuntos
Comportamento Materno , Privação Materna , Aprendizagem em Labirinto/fisiologia , Análise de Variância , Animais , Animais Recém-Nascidos , Corpo Estriado/metabolismo , Lobo Frontal/metabolismo , Hipocampo/metabolismo , Imuno-Histoquímica , Masculino , Memória/fisiologia , Fotomicrografia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Wistar , Recompensa
11.
Dev Psychobiol ; 50(7): 704-13, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18688818

RESUMO

In the present work we employed Fos expression, an index of neuronal activity, to identify brain areas activated by a single exposure to "neonatal handling" on postnatal Day 1. Eight hours following "handling" there was an increase in the number of Fos positive cells in the hippocampus, the parietal and occipital cortex. We also recorded maternal behavior during the 8 hr following "handling." "Handled" pups received increased maternal licking during the 4 hr following the end of "handling." Furthermore, the number of Fos positive cells detected in each of the three brain areas 8 hr following "handling" was positively correlated with the amount of licking up to 8 hr following "handling." These results indicate that the increased maternal care could underlie the handling-induced increase in Fos. The Fos protein, acting as a transcription factor, controls the expression of downstream genes, whose products may mediate the effects of "neonatal handling" on the developing rat brain.


Assuntos
Animais Recém-Nascidos/metabolismo , Nível de Alerta/fisiologia , Encéfalo/metabolismo , Manobra Psicológica , Comportamento Materno/fisiologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Animais , Feminino , Asseio Animal/fisiologia , Hipocampo/metabolismo , Masculino , Lobo Occipital/metabolismo , Lobo Parietal/metabolismo , Ratos , Ratos Wistar , Valores de Referência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA