Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Alzheimers Dement ; 20(4): 2861-2872, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38451782

RESUMO

BACKGROUND: Structural disconnectivity was found to precede dementia. Global white matter abnormalities might also be associated with postoperative delirium (POD). METHODS: We recruited older patients (≥65 years) without dementia that were scheduled for major surgery. Diffusion kurtosis imaging metrics were obtained preoperatively, after 3 and 12 months postoperatively. We calculated fractional anisotropy (FA), mean diffusivity (MD), mean kurtosis (MK), and free water (FW). A structured and validated delirium assessment was performed twice daily. RESULTS: Of 325 patients, 53 patients developed POD (16.3%). Preoperative global MD (standardized beta 0.27 [95% confidence interval [CI] 0.21-0.32] p < 0.001) was higher in patients with POD. Preoperative global MK (-0.07 [95% CI -0.11 to (-0.04)] p < 0.001) and FA (0.07 [95% CI -0.10 to (-0.04)] p < 0.001) were lower. When correcting for baseline diffusion, postoperative MD was lower after 3 months (0.05 [95% CI -0.08 to (-0.03)] p < 0.001; n = 183) and higher after 12 months (0.28 [95% CI 0.20-0.35] p < 0.001; n = 45) among patients with POD. DISCUSSION: Preoperative structural disconnectivity was associated with POD. POD might lead to white matter depletion 3 and 12 months after surgery.


Assuntos
Demência , Delírio do Despertar , Substância Branca , Humanos , Idoso , Estudos de Coortes , Substância Branca/diagnóstico por imagem , Imagem de Tensor de Difusão/métodos
2.
EBioMedicine ; 99: 104915, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38113760

RESUMO

BACKGROUND: Degenerative cervical myelopathy (DCM) is the most common cause of adult spinal cord dysfunction globally. Associated neurological symptoms and signs have historically been explained by pathobiology within the cervical spine. However, recent advances in imaging have shed light on numerous brain changes in patients with DCM, and it is hypothesised that these changes contribute to DCM pathogenesis. The aetiology, significance, and distribution of these supraspinal changes is currently unknown. The objective was therefore to synthesise all current evidence on brain changes in DCM. METHODS: A systematic review was performed. Cross-sectional and longitudinal studies with magnetic resonance imaging on a cohort of patients with DCM were eligible. PRISMA guidelines were followed. MEDLINE and Embase were searched to 28th August 2023. Duplicate title/abstract screening, data extraction and risk of bias assessments were conducted. A qualitative synthesis of the literature is presented as per the Synthesis Without Meta-Analysis (SWiM) reporting guideline. The review was registered with PROSPERO (ID: CRD42022298538). FINDINGS: Of the 2014 studies that were screened, 47 studies were identified that used MRI to investigate brain changes in DCM. In total, 1500 patients with DCM were included in the synthesis, with a mean age of 53 years. Brain alterations on MRI were associated with DCM both before and after surgery, particularly within the sensorimotor network, visual network, default mode network, thalamus and cerebellum. Associations were commonly reported between brain MRI alterations and clinical measures, particularly the Japanese orthopaedic association (JOA) score. Risk of bias of included studies was low to moderate. INTERPRETATION: The rapidly expanding literature provides mounting evidence for brain changes in DCM. We have identified key structures and pathways that are altered, although there remains uncertainty regarding the directionality and clinical significance of these changes. Future studies with greater sample sizes, more detailed phenotyping and longer follow-up are now needed. FUNDING: ODM is supported by an Academic Clinical Fellowship at the University of Cambridge. BMD is supported by an NIHR Clinical Doctoral Fellowship at the University of Cambridge (NIHR300696). VFJN is supported by an NIHR Rosetrees Trust Advanced Fellowship (NIHR302544). This project was supported by an award from the Rosetrees Foundation with the Storygate Trust (A2844).


Assuntos
Doenças da Medula Espinal , Humanos , Pessoa de Meia-Idade , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Estudos Transversais , Imageamento por Ressonância Magnética , Doenças da Medula Espinal/diagnóstico por imagem
3.
Anesthesiology ; 131(6): 1239-1253, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31567366

RESUMO

BACKGROUND: Functional brain connectivity studies can provide important information about changes in brain-state dynamics during general anesthesia. In adults, γ-aminobutyric acid-mediated agents disrupt integration of information from local to the whole-brain scale. Beginning around 3 to 4 months postnatal age, γ-aminobutyric acid-mediated anesthetics such as sevoflurane generate α-electroencephalography oscillations. In previous studies of sevoflurane-anesthetized infants 0 to 3.9 months of age, α-oscillations were absent, and power spectra did not distinguish between anesthetized and emergence from anesthesia conditions. Few studies detailing functional connectivity during general anesthesia in infants exist. This study's aim was to identify changes in functional connectivity of the infant brain during anesthesia. METHODS: A retrospective cohort study was performed using multichannel electroencephalograph recordings of 20 infants aged 0 to 3.9 months old who underwent sevoflurane anesthesia for elective surgery. Whole-brain functional connectivity was evaluated during maintenance of a surgical state of anesthesia and during emergence from anesthesia. Functional connectivity was represented as networks, and network efficiency indices (including complexity and modularity) were computed at the sensor and source levels. RESULTS: Sevoflurane decreased functional connectivity at the δ-frequency (1 to 4 Hz) in infants 0 to 3.9 months old when comparing anesthesia with emergence. At the sensor level, complexity decreased during anesthesia, showing less whole-brain integration with prominent alterations in the connectivity of frontal and parietal sensors (median difference, 0.0293; 95% CI, -0.0016 to 0.0397). At the source level, similar results were observed (median difference, 0.0201; 95% CI, -0.0025 to 0.0482) with prominent alterations in the connectivity between default-mode and frontoparietal regions. Anesthesia resulted in fragmented modules as modularity increased at the sensor (median difference, 0.0562; 95% CI, 0.0048 to 0.1298) and source (median difference, 0.0548; 95% CI, -0.0040 to 0.1074) levels. CONCLUSIONS: Sevoflurane is associated with decreased capacity for efficient information transfer in the infant brain. Such findings strengthen the hypothesis that conscious processing relies on an efficient system of integrated information transfer across the whole brain.


Assuntos
Anestésicos Inalatórios/administração & dosagem , Encéfalo/efeitos dos fármacos , Estado de Consciência/efeitos dos fármacos , Ritmo Delta/efeitos dos fármacos , Rede Nervosa/efeitos dos fármacos , Sevoflurano/administração & dosagem , Encéfalo/fisiologia , Estudos de Coortes , Estado de Consciência/fisiologia , Ritmo Delta/fisiologia , Eletroencefalografia/efeitos dos fármacos , Eletroencefalografia/métodos , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Rede Nervosa/fisiologia , Estudos Retrospectivos , Inconsciência/induzido quimicamente , Inconsciência/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA