RESUMO
Bioactive compounds that can be recovered by the solid wastes of the olive oil sector, such as polyphenols, are known for their significant antioxidant and antimicrobial activities with potential application in nutraceutical, cosmetic, and food industries. Given that industrial demands are growing, and the polyphenol market value is ever increasing, a systematic study on the recovery of natural antioxidant compounds from olive pomace using ultrasound-assisted extraction (UAE) was conducted. Single-factor parameters, i.e., the extraction solvent, time, and solid-to-liquid ratio, were investigated evaluating the total phenolic content (TPC) recovery and the antioxidant activity of the final extract. The acetone-water system (50% v/v, 20 min, 1:20 g mL-1) exhibited the highest total phenolic content recovery (168.8 ± 5.5 mg GAE per g of dry extract). The olive pomace extract (OPE) was further assessed for its antioxidant and antibacterial activities. In DPPH, ABTS, and CUPRAC, OPE exhibited an antioxidant capacity of 413.6 ± 1.9, 162.72 ± 3.36 and 384.9 ± 7.86 mg TE per g of dry extract, respectively. The antibacterial study showed that OPE attained a minimum inhibitory activity (MIC) of 2.5 mg mL-1 against E. coli and 10 mg mL-1 against B. subtilis. Hydroxytyrosol and tyrosol were identified as the major phenolic compounds of OPE. Furthermore, active chitosan-polyvinyl alcohol (CHT/PVA) films were prepared using different OPE loadings (0.01-0.1%, w/v). OPE-enriched films showed a dose-dependent antiradical scavenging activity reaching 85.7 ± 4.6% (ABTS) and inhibition growth up to 81% against B. subtilis compared to the control film. Increased UV light barrier ability was also observed for the films containing OPE. These results indicate that OPE is a valuable source of phenolic compounds with promising biological activities that can be exploited for developing multifunctional food packaging materials.
Assuntos
Antibacterianos , Antioxidantes , Olea , Fenóis , Extratos Vegetais , Olea/química , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/isolamento & purificação , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/isolamento & purificação , Fenóis/química , Fenóis/isolamento & purificação , Fenóis/farmacologia , Fenóis/análise , Embalagem de Alimentos , Polifenóis/química , Polifenóis/farmacologia , Polifenóis/isolamento & purificação , Ondas Ultrassônicas , Testes de Sensibilidade MicrobianaRESUMO
The laccase-catalyzed oxidation of hydroxytyrosol (HT) towards the formation of its bioactive oligomer derivatives was investigated. The biocatalytic oligomerization was catalyzed by laccase from Trametes versicolor in aqueous or various water-miscible organic solvents and deep eutectic solvent (DES)-based media. Mass Spectroscopy and Nuclear Magnetic Resonance were used for the characterization of the products. The solvent system used significantly affects the degree of HT oligomerization. The use of 50 % v/v methanol favored the production of the HT dimer, while other organic solvents as well as DESs led to the formation of hydroxytyrosol trimer and other oligomers. In vitro studies showed that the HT dimer exhibits 3- to 4-fold enhanced antibacterial activity against Gram-positive and Gram-negative bacteria compared to the parent compound. Moreover, the ability of HT dimer to inhibit the activity of soybean lipoxygenase and Candida rugosa lipase was 1.5-fold higher than HT, while molecular docking supported these results. Furthermore, HT dimer showed reduced cytotoxicity against HEK293 cells and exhibited a strong ability to inhibit ROS formation. The enhanced bioactivity of HT dimer indicates that this compound could be considered for use in cosmetics, skin-care products, and nutraceuticals.
Assuntos
Lacase , Álcool Feniletílico/análogos & derivados , Polyporaceae , Trametes , Humanos , Lacase/química , Antibacterianos , Simulação de Acoplamento Molecular , Células HEK293 , Bactérias Gram-Negativas , Bactérias Gram-Positivas , SolventesRESUMO
Superparamagnetic iron oxide nanoparticles (SPIONs) have garnered significant attention in the medical sector due to their exceptional superparamagnetic properties and reliable tracking capabilities. In this study, we investigated the immunotoxicity of SPIONs with a modified surface to enhance hydrophilicity and prevent aggregate formation. The synthesized SPIONs exhibited a remarkably small size (~4 nm) and underwent surface modification using a novel "haircut" reaction strategy. Experiments were conducted in vitro using a human monocytic cell line (THP-1). SPIONs induced dose-dependent toxicity to THP-1 cells, potentially by generating ROS and initiating the apoptotic pathway in the cells. Concentrations up to 10 µg/mL did not affect the expression of Nrf2, HO-1, NF-κB, or TLR-4 proteins. The results of the present study demonstrated that highly hydrophilic SPIONs were highly toxic to immune cells; however, they did not activate pathways of inflammation and immune response. Further investigation into the mechanisms of cytotoxicity is warranted to develop a synthetic approach for producing effective, highly hydrophilic SPIONs with little to no side effects.
RESUMO
Enzymatic lipophilization has been proposed as a cost-effective strategy to produce new liposoluble antioxidant compounds. In this study, modified oils rich in structured phenolipids were prepared via one-pot enzymatic acylation of hydroxytyrosol (HTYR), vanillyl alcohol (VA) and homovanillyl alcohol (HVA) with pomace olive oil (POO) in solvent-free conditions using immobilized lipase on biogenic nanoparticles. The effect of temperature (30-70 °C) and enzyme concentration (0.1-1%, w/w) on the efficiency of the bioprocess as well as the reusability of the nanobiocatalyst were thoroughly investigated. The modified oils exhibited increased antioxidant activity compared to the control oil according to DPPH and CUPRAC assays (p < 0.05). The oxidative stability of pomace olive oil was also significantly enhanced after modification, as depicted by the K232 values and TBARS contents under accelerated oxidation at 60 °C (p < 0.05). Moreover, a fortified mayonnaise containing modified oil with HTYR was prepared that was noticeably stable compared to the control mayonnaise at 28 °C for 5 months (p < 0.05). Enzymatically modified oils have great potential for application in the nutraceutical and food industry, encouraging the exploitation of immobilized lipases as effective and green catalytic tools.
Assuntos
Antioxidantes , Óleos , Antioxidantes/farmacologia , Antioxidantes/química , Azeite de Oliva , Oxirredução , Óleos/química , Estresse OxidativoRESUMO
In the present work, direct incorporation of bioactive compounds onto the surface and interlayer of nanoclays before their incorporation into the final polymeric film was conducted, based on a green methodology developed by our group that is compatible with food packaging. This will lead to the higher thermal stability and the significant reduction of the loss of activity of the active ingredients during packaging configuration. On this basis, the essential oil (EO) components carvacrol (C), thymol (T) as well as olive leaf extract (OLE), which is used for the first time, were incorporated onto organo-modified montmorillonite (O) or inorganic bentonite (B) through the evaporation/adsorption method. The prepared bioactive nanocarriers were further mixed with low-density polyethylene (LDPE), via melt compounding, in order to prepare films for potential use as fresh fruit and vegetable packaging material. Characterization of the bioactive nanocarriers and films were performed through XRD, TGA, tensile, antimicrobial and antioxidant tests. Films with organically modified montmorillonite loaded with carvacrol (OC), thymol (OT) and olive leaf extract (OOLE) at 5% wt. showed better results in terms of mechanical properties. The films with polyethylene and organically modified montmorillonite loaded with carvacrol or thymol at 20% wt. (PE_OC20 and PE_OT20), as well as with olive leaf extract at 5 or 10 %wt., clay:bioactive substance ratio 1:0.5 and 10% compatibilizer (PE_OOLE5_MA10 and PE_OOLE10_MA10) exhibited the highest antioxidant activity. The resulting films displayed outstanding antimicrobial properties against Gram-negative Escherichia coli (E. coli) with the best results appearing in the films with 10% OC and OT.
Assuntos
Anti-Infecciosos , Polietileno , Timol , Antioxidantes/farmacologia , Argila , Bentonita , Escherichia coli , Anti-Infecciosos/farmacologia , Embalagem de Alimentos/métodosRESUMO
As olive leaves constitute the main by-product of the olive oil industry with important environmental and economic impact, there is an increasing demand for its valorization. In the present work, we report the development and application of immobilized enzyme batch bioreactors for the chemo-enzymatic treatment of an aqueous Olea europaea leaf extract rich in oleuropein to produce an extract enriched in hydroxytyrosol and other oleuropein hydrolysis products. To this end, a robust biocatalyst was developed through the immobilization of ß-glucosidase on chitosan-coated magnetic beads which exhibited high hydrolytic stability after 240 h of incubation at 37 °C. The biocatalyst was successfully used in both a rotating bed-reactor and a stir-tank reactor for the modification of the olive leaf extract leading to high conversion yields of oleuropein (exceeding 90%), while an up to 2.5 times enrichment in hydroxytyrosol was achieved. Over 20 phenolic compounds (from different classes of phytochemicals such as flavonoids, secoiridoids, and their derivatives) were identified, in the extract before and after its modification through various chromatographic and spectroscopic techniques. Finally, the biological activity of both extracts was evaluated. Compared to the non-modified extract, the modified one demonstrated 20% higher antioxidant activity, seven-fold higher antibacterial activity, and enhanced cytotoxicity against leiomyosarcoma cells.
Assuntos
Olea , Antioxidantes/química , Antioxidantes/farmacologia , Enzimas Imobilizadas , Iridoides/química , Olea/química , Álcool Feniletílico/análogos & derivados , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Folhas de PlantaRESUMO
Hypergolic systems rely on organic fuel and a powerful oxidizer that spontaneously ignites upon contact without any external ignition source. Although their main utilization pertains to rocket fuels and propellants, it is only recently that hypergolics has been established from our group as a new general method for the synthesis of different morphologies of carbon nanostructures depending on the hypergolic pair (organic fuel-oxidizer). In search of new pairs, the hypergolic mixture described here contains polyaniline as the organic source of carbon and fuming nitric acid as strong oxidizer. Specifically, the two reagents react rapidly and spontaneously upon contact at ambient conditions to afford carbon nanosheets. Further liquid-phase exfoliation of the nanosheets in dimethylformamide results in dispersed single layers exhibiting strong Tyndall effect. The method can be extended to other conductive polymers, such as polythiophene and polypyrrole, leading to the formation of different type carbon nanostructures (e.g., photolumincent carbon dots). Apart from being a new synthesis pathway towards carbon nanomaterials and a new type of reaction for conductive polymers, the present hypergolic pairs also provide a novel set of rocket bipropellants based on conductive polymers.
RESUMO
A facile, environment-friendly, versatile and reproducible approach to the successful oxidation of fullerenes (oxC60) and the formation of highly hydrophilic fullerene derivatives is introduced. This synthesis relies on the widely known Staudenmaier's method for the oxidation of graphite, to produce both epoxy and hydroxy groups on the surface of fullerenes (C60) and thereby improve the solubility of the fullerene in polar solvents (e.g. water). The presence of epoxy groups allows for further functionalization via nucleophilic substitution reactions to generate new fullerene derivatives, which can potentially lead to a wealth of applications in the areas of medicine, biology, and composite materials. In order to justify the potential of oxidized C60 derivatives for bio-applications, we investigated their cytotoxicity in vitro as well as their utilization as support in biocatalysis applications, taking the immobilization of laccase for the decolorization of synthetic industrial dyes as a trial case.
Assuntos
Citotoxinas/química , Fulerenos/química , Lacase/química , Animais , Biocatálise , Catálise , Linhagem Celular Tumoral , Sobrevivência Celular , Citotoxinas/síntese química , Enzimas Imobilizadas/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Oxirredução , SolubilidadeRESUMO
This chapter deals with the use of functionalized carbon nanotubes (fCNTs) as supports for the development of nanobiocatalytic systems through the immobilization of enzymes. The surface characteristics, properties and production of carbon nanotubes are described, while an analysis in their biological applications is also presented. The results presenting within the text are giving insights to the effect of carbon nanotubes on the catalytic and structural characteristics of different proteins, such as cytochrome c from equine heart (cyt c) and laccase from Trametes versicolor (TvL), either when they are used as additives in the reaction medium or as supports for protein immobilization. A variety of biochemical and spectroscopic techniques is applied to investigate the interactions between the protein biomolecules and carbon nanotubes. The results showed that the presence of fCNTs enables cyt c to maintain both its secondary structure and heme microenvironment. Non-covalent and covalent immobilization approaches are also described, while the immobilized biocatalysts are characterized with respect to their catalytic and structural characteristics. Immobilized TvL was found to exhibit higher catalytic activity when non-specific binding was used as immobilization procedure (up to 0.85Uµg-1), compared to covalent immobilization (up to 0.7Uµg-1), while the increase of the alkyl chain of the functionalized CNTs also seems to affect the catalytic efficiency of the immobilized enzymes. The nanobiocatalytic systems that are presented here demonstrated exceptional stability (up to 31% of their initial activity is maintained after 24h incubation at 60°C) and reusability (up to 58% remaining activity after 8 successive catalytic cycles) compared to the native enzymes, leading to robust biocatalytic systems appropriate for various applications of biotechnological and industrial interest.
Assuntos
Citocromos c/química , Enzimas Imobilizadas/química , Lacase/química , Nanotubos de Carbono/química , Polyporaceae/enzimologia , Animais , Biocatálise , Cavalos , Polyporaceae/químicaRESUMO
A novel biocompatible water-in-oil microemulsion was developed using nonionic surfactants and was investigated as a potential enzyme delivery system for pharmaceutical applications. The system was composed of isopropyl myristate/polysorbate 80 (Tween 80)/distilled monoglycerides/water/propylene glycol (PG), had a low total surfactant concentration (8.3% w/w), and was able to incorporate approximately 3% w/w aqueous phase containing horseradish peroxidase (HRP). Structural and activity aspects of the system were studied using a variety of techniques such as dynamic light scattering (DLS), electron paramagnetic resonance (EPR), and dynamic interfacial tension. The apparent hydrodynamic diameter of the empty droplets was calculated at about 37 nm. Different enzyme concentrations, ranging from 0.01 to 1.39 µM, were used for both DLS and EPR studies to effectively determine the localization of the macromolecule in the microemulsion. According to the results, for high enzyme concentrations, a participation of HRP in the surfactant monolayer of the microemulsion is evident. The number of reverse micelles in the microemulsion was defined by a theoretical model and was used to clarify how the enzyme concentration affects the number of empty and loaded reverse micelles. To assure that the system allows the enzyme to retain its catalytic activity, an oxidative reaction catalyzed by HRP was successfully carried out with the use of the model substrate 2,2'-azino-bis[3-ethylbenzothiazoline-6-sulfonic acid]. The influence of several parameters such as temperature, pH, and PG concentration was examined to optimize the reaction conditions, and a kinetic study was conducted revealing an ordered-Bi-Bi mechanism. Values of all kinetic parameters were determined. The release of the encapsulated enzyme was studied using an adequate receiver phase, revealing the effectiveness of the proposed microemulsion not only as a microreactor but also as a carrier for therapeutic biomolecules.
Assuntos
Materiais Biocompatíveis/química , Portadores de Fármacos/química , Emulsões/química , Peroxidase do Rábano Silvestre/química , Armoracia/enzimologia , Benzotiazóis/química , Concentração de Íons de Hidrogênio , Cinética , Micelas , Monoglicerídeos/química , Miristatos/química , Oxirredução , Polissorbatos/química , Propilenoglicol/química , Ácidos Sulfônicos/química , Temperatura , Viscosidade , Água/químicaRESUMO
Recent science evidenced the interlinkage of oxidative stress and cancer. Due to the inherent complexity of cancer and its accompanying effect of oxidative stress, novel molecules, containing combinatorial functionalities should be targeted. Herein, we synthesized gemcitabine-5'-O-lipoate derived from a regioselective coupling of the chemotherapeutic drug gemcitabine (GEM), a first-line agent for cancer therapy and α-lipoic acid (LA), a potent antioxidant. gemcitabine-5'-O-lipoate was obtained in 4 chemical steps. To avoid the tedious and laborious chemical steps we also utilized biocatalysis using immobilized Candida antarctica lipase B (CALB), and the optimum conditions for the regioselective and one-pot synthesis of gemcitabine-5'-O-lipoate were established by exploiting different solvents (organic solvents and ionic liquids) and enzyme immobilization (acrylic resin and carbon nanotubes). Cytotoxic activity of co-administrating GEM and LA was proven to be synergistic against non-small cell lung cancer cells whereas antagonistic for bladder cancer cells. In contrast, the gemcitabine-5'-O-lipoate hybrid was found to be superior to the parent compounds against both non-small cell lung cancer and bladder cancer cells as also was found to preserve the redox activity of the parent compound LA. The regioselective biotransformation mediated synthesis of the anticancer-antioxidant hybrid illustrates the capacity of biocatalysis to act as an asset in molecular hybridization techniques.
Assuntos
Antineoplásicos/farmacologia , Desoxicitidina/análogos & derivados , Proteínas Fúngicas/metabolismo , Lipase/metabolismo , Antineoplásicos/química , Antineoplásicos/metabolismo , Biocatálise , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Desoxicitidina/química , Desoxicitidina/metabolismo , Desoxicitidina/farmacologia , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Humanos , Estrutura Molecular , Oxirredução , Estereoisomerismo , Relação Estrutura-Atividade , GencitabinaRESUMO
Novel silybin acylated derivatives with dicarboxylic acids were prepared in various organic solvents using immobilized Candida antarctica lipase B (Novozym 435(®)). The reaction parameters affecting the silybin conversion, such as the nature of the organic solvent and the acyl donor used were investigated. The antiproliferative effects of silybin monoesters, and their ability to modulate the secretion of vascular endothelial growth factor (VEGF) were estimated using K562 human lymphoblastoma cells and compared to the parental compound. The synthesized esters retained the biological function of silybin and in some cases were more effective, indicating that target biotransformation may generate novel compounds with improved antitumor and antiangiogenic activities.
Assuntos
Sobrevivência Celular/efeitos dos fármacos , Ácidos Dicarboxílicos/química , Lipase/química , Silimarina/síntese química , Silimarina/farmacologia , Acetilação , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Proteínas Fúngicas , Humanos , Células K562 , SilibinaRESUMO
A series of water-in-oil microemulsion systems formulated without surfactant were used to solubilize lipases from Rhizomucor miehei and Candida antarctica B. The effect of the system's composition on the velocity of enzymic reactions was investigated following a model esterification reaction. The interaction between enzymes and the microemulsion environment was studied by steady state fluorescence spectroscopy. The site of localization of the enzyme within the different microdomains of the dispersed phase was investigated by applying the fluorescence energy transfer technique. To determine the properties of the interface between water and organic solvent of the surfactantless microemulsion systems the Electron Paramagnetic Resonance (EPR) spectroscopic technique was applied. The results indicated that even at low water content, water-rich structures are formed. This was confirmed by conductivity measurements. By the addition of enzyme it was observed that when the aqueous phase of the surfactantless microemulsion systems exceeds 2% (v/v) the enzyme retains its catalytic activity, as it is located within the water pools that protect it from the organic solvent. These confined water phases show a propanol rich interface with hexane and their structure depends on the system's composition.