Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Nat Commun ; 15(1): 3149, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605037

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) develops through step-wise genetic and molecular alterations including Kras mutation and inactivation of various apoptotic pathways. Here, we find that development of apoptotic resistance and metastasis of KrasG12D-driven PDAC in mice is accelerated by deleting Plk3, explaining the often-reduced Plk3 expression in human PDAC. Importantly, a 41-kDa Plk3 (p41Plk3) that contains the entire kinase domain at the N-terminus (1-353 aa) is activated by scission of the precursor p72Plk3 at Arg354 by metalloendopeptidase nardilysin (NRDC), and the resulting p32Plk3 C-terminal Polo-box domain (PBD) is removed by proteasome degradation, preventing the inhibition of p41Plk3 by PBD. We find that p41Plk3 is the activated form of Plk3 that regulates a feed-forward mechanism to promote apoptosis and suppress PDAC and metastasis. p41Plk3 phosphorylates c-Fos on Thr164, which in turn induces expression of Plk3 and pro-apoptotic genes. These findings uncover an NRDC-regulated post-translational mechanism that activates Plk3, establishing a prototypic regulation by scission mechanism.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Camundongos , Animais , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/patologia , Metaloendopeptidases/genética , Metaloendopeptidases/metabolismo
2.
Cell Death Differ ; 27(8): 2402-2416, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32139899

RESUMO

BRUCE is a DNA damage response protein that promotes the activation of ATM and ATR for homologous recombination (HR) repair in somatic cells, making BRUCE a key protector of genomic stability. Preservation of genomic stability in the germline is essential for the maintenance of species. Here, we show that BRUCE is required for the preservation of genomic stability in the male germline of mice, specifically in spermatogonia and spermatocytes. Conditional knockout of Bruce in the male germline leads to profound defects in spermatogenesis, including impaired maintenance of spermatogonia and increased chromosomal anomalies during meiosis. Bruce-deficient pachytene spermatocytes frequently displayed persistent DNA breaks. Homologous synapsis was impaired, and nonhomologous associations and rearrangements were apparent in up to 10% of Bruce-deficient spermatocytes. Genomic instability was apparent in the form of chromosomal fragmentation, translocations, and synapsed quadrivalents and hexavalents. In addition, unsynapsed regions of rearranged autosomes were devoid of ATM and ATR signaling, suggesting an impairment in the ATM- and ATR-dependent DNA damage response of meiotic HR. Taken together, our study unveils crucial functions for BRUCE in the maintenance of spermatogonia and in the regulation of meiotic HR-functions that preserve the genomic stability of the male germline.


Assuntos
Instabilidade Genômica , Células Germinativas/metabolismo , Proteínas Inibidoras de Apoptose/metabolismo , Animais , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteína BRCA1/metabolismo , Proteínas de Ciclo Celular/metabolismo , Quebra Cromossômica , Cromossomos de Mamíferos/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Instabilidade Genômica/efeitos dos fármacos , Células Germinativas/efeitos dos fármacos , Masculino , Meiose , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais/efeitos dos fármacos , Espermatócitos/efeitos dos fármacos , Espermatócitos/metabolismo , Espermatogênese/efeitos dos fármacos , Complexo Sinaptonêmico/efeitos dos fármacos , Complexo Sinaptonêmico/metabolismo , Tamoxifeno/farmacologia , Testículo/efeitos dos fármacos , Testículo/metabolismo
3.
Exp Cell Res ; 371(1): 20-30, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29842877

RESUMO

Although resident cardiac stem cells have been reported, regeneration of functional cardiomyocytes (CMs) remains a challenge. The present study identifies an alternative progenitor source for CM regeneration without the need for genetic manipulation or invasive heart biopsy procedures. Unlike limb skeletal muscles, masseter muscles (MM) in the mouse head are developed from Nkx2-5 mesodermal progenitors. Adult masseter muscle satellite cells (MMSCs) display heterogeneity in developmental origin and cell phenotypes. The heterogeneous MMSCs that can be characterized by cell sorting based on stem cell antigen-1 (Sca1) show different lineage potential. While cardiogenic potential is preserved in Sca1+ MMSCs as shown by expression of cardiac progenitor genes (including Nkx2-5), skeletal myogenic capacity is maintained in Sca1- MMSCs with Pax7 expression. Sca1+ MMSC-derived beating cells express cardiac genes and exhibit CM-like morphology. Electrophysiological properties of MMSC-derived CMs are demonstrated by calcium transients and action potentials. These findings show that MMSCs could serve as a novel cell source for cardiomyocyte replacement.


Assuntos
Diferenciação Celular , Músculo Masseter/citologia , Desenvolvimento Muscular/genética , Miócitos Cardíacos/citologia , Células Satélites de Músculo Esquelético/citologia , Potenciais de Ação/fisiologia , Animais , Ataxina-1/genética , Ataxina-1/metabolismo , Biomarcadores/metabolismo , Cálcio/metabolismo , Linhagem da Célula/genética , Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteína Homeobox Nkx-2.5/genética , Proteína Homeobox Nkx-2.5/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Músculo Masseter/metabolismo , Camundongos , Camundongos Transgênicos , Miócitos Cardíacos/metabolismo , Fator de Transcrição PAX7/genética , Fator de Transcrição PAX7/metabolismo , Fenótipo , Regeneração , Células Satélites de Músculo Esquelético/metabolismo , Proteína Vermelha Fluorescente
4.
Mutat Res ; 800-802: 14-28, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28458064

RESUMO

The rise of advanced technologies for characterizing human populations at the molecular level, from sequence to function, is shifting disease prevention paradigms toward personalized strategies. Because minimization of adverse outcomes is a key driver for treatment decisions for diseased populations, developing personalized therapy strategies represent an important dimension of both precision medicine and personalized prevention. In this commentary, we highlight recently developed enabling technologies in the field of DNA damage, DNA repair, and mutagenesis. We propose that omics approaches and functional assays can be integrated into population studies that fuse basic, translational and clinical research with commercial expertise in order to accelerate personalized prevention and treatment of cancer and other diseases linked to aberrant responses to DNA damage. This collaborative approach is generally applicable to efforts to develop data-driven, individualized prevention and treatment strategies for other diseases. We also recommend strategies for maximizing the use of biological samples for epidemiological studies, and for applying emerging technologies to clinical applications.


Assuntos
Neoplasias/diagnóstico , Neoplasias/prevenção & controle , Medicina de Precisão , Dano ao DNA , Reparo do DNA , Humanos , Mutagênese
5.
Mol Cancer Res ; 15(6): 635-650, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28356330

RESUMO

The current concepts and practice of cancer immunotherapy evolved from classical experiments that distinguished "self" from "non-self" and the finding that humoral immunity is complemented by cellular immunity. Elucidation of the biology underlying immune checkpoints and interactions between ligands and ligand receptors that govern the immune system's ability to recognize tumor cells as foreign has led to the emergence of new strategies that mobilize the immune system to reverse this apparent tolerance. Some of these approaches have led to new therapies such as the use of mAbs to interfere with the immune checkpoint. Others have exploited molecular technologies to reengineer a subset of T cells to directly engage and kill tumor cells, particularly those of B-cell malignancies. However, before immunotherapy can become a more effective method of cancer care, there are many challenges that remain to be addressed and hurdles to overcome. Included are manipulation of tumor microenvironment (TME) to enhance T effector cell infiltration and access to the tumor, augmentation of tumor MHC expression for adequate presentation of tumor associated antigens, regulation of cytokines and their potential adverse effects, and reduced risk of secondary malignancies as a consequence of mutations generated by the various forms of genetic engineering of immune cells. Despite these challenges, the future of immunotherapy as a standard anticancer therapy is encouraging. Mol Cancer Res; 15(6); 635-50. ©2017 AACR.


Assuntos
Imunoterapia/métodos , Complexo Principal de Histocompatibilidade/fisiologia , Neoplasias/imunologia , Neoplasias/terapia , Adenosina/metabolismo , Citocinas/imunologia , Citocinas/metabolismo , Humanos , Tolerância Imunológica , Imunoterapia/efeitos adversos , Imunoterapia/economia , Complexo Principal de Histocompatibilidade/imunologia , Mutação , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T/imunologia , Microambiente Tumoral
6.
Oncotarget ; 7(15): 20425-39, 2016 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-26967250

RESUMO

The dual specificity phosphatase Cdc25A is a key regulator of the cell cycle that promotes cell cycle progression by dephosphorylating and activating cyclin-dependent kinases. In response to genotoxicants, Cdc25A undergoes posttranslational modifications which contribute to its proteasome-mediated degradation and consequent cell cycle checkpoint arrest. The most thoroughly studied Cdc25A modification is phosphorylation. We now provide the first evidence that Cdc25A can be acetylated and that it directly interacts with the ARD1 acetyltransferase which acetylates Cdc25A both biochemically and in cultured cells. When acetylated, Cdc25A has an extended half-life. We have also identified the class IV histone deacetylase, HDAC11, as a Cdc25A deacetylase. We further show that DNA damage, such as exposure to methyl methanesulfonate (MMS), etoposide or arsenic, increases Cdc25A acetylation. Importantly, this acetylation modulates Cdc25A phosphatase activity and its function as a cell cycle regulator, and may reflect a cellular response to DNA damage. Since Cdc25A, ARD1, and HDAC11 are frequently dysregulated in multiple types of cancer, our findings may provide insight into a novel mechanism in carcinogenesis.


Assuntos
Histona Desacetilases/metabolismo , Acetiltransferase N-Terminal A/metabolismo , Acetiltransferase N-Terminal E/metabolismo , Neoplasias/patologia , Fosfatases cdc25/metabolismo , Acetilação , Apoptose , Ciclo Celular , Proliferação de Células , Células Cultivadas , Dano ao DNA , Células HEK293 , Humanos , Neoplasias/metabolismo , Fosforilação , Processamento de Proteína Pós-Traducional , Ubiquitinação
7.
Mutagenesis ; 29(5): 341-50, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25103728

RESUMO

Next generation sequencing has become a powerful tool in dissecting and identifying mutations and genomic structural variants that accompany tumourigenesis. Sequence analysis of glioblastoma multiforme (GBM) illustrates the ability to rapidly identify mutations that may affect phenotype. Approximately 50% of human GBMs overexpress epidermal growth factor receptor (EGFR) which renders the EGFR protein a compelling therapeutic target. In brain tumours, attempts to target EGFR as a cancer therapeutic, however, have achieved little or no benefit. The mechanisms that drive therapeutic resistance to EGFR inhibitors in brain tumours are not well defined, and drug resistance contributes to the deadly and aggressive nature of the disease. Whole genome sequencing of four primary GBMs revealed multiple pathways by which EGFR protein abundance becomes deregulated in these tumours and will guide the development of new strategies for treating EGFR overexpressing tumours. Each of the four tumours displayed a different mechanism leading to increased EGFR protein levels. One mechanism is mediated by gene amplification and tandem duplication of the kinase domain. A second involves an intragenic deletion that generates a constitutively active form of the protein. A third combines the loss of a gene which encodes a protein that regulates EGFR abundance as well as an miRNA that modulates EGFR expression. A fourth mechanism entails loss of an ubiquitin ligase docking site in the C-terminal part of the protein whose absence inhibits turnover of the receptor.


Assuntos
Receptores ErbB/metabolismo , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Sequência de Aminoácidos , Neoplasias Encefálicas/genética , Variações do Número de Cópias de DNA , Receptores ErbB/genética , Amplificação de Genes , Deleção de Genes , Biblioteca Gênica , Humanos , Imuno-Histoquímica , MicroRNAs/genética , MicroRNAs/metabolismo , Dados de Sequência Molecular , Análise de Sequência de DNA
9.
Eur J Cancer ; 49(10): 2345-55, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23578570

RESUMO

BACKGROUND: Cetuximab is an epidermal growth factor receptor (EGFR)-blocking antibody that has been approved for the treatment of patients with head and neck squamous cell carcinoma (HNSCC) and metastatic colorectal cancer, but no predictive biomarkers of activity have been yet identified. Establishment of such biomarkers will help identify a subset of patients that will benefit from cetuximab therapy. METHODS: In this paper, we report on a patient with HNSCC who had a complete tumour regression following treatment with cetuximab given as a single agent after initial surgery and radiation therapy. The EGFR protein expression level, the EGFR gene copy number and the EGFR gene sequence were assessed from both normal and tumour tissues. RESULTS: Besides protein overexpression and gene amplification in the tumour tissue, sequencing of the EGFR gene from the patient revealed the presence of two somatic mutations, one in the kinase domain (R705G) and the other in the ligand binding domain (P546S). Cells that stably express these EGFR mutants were treated with cetuximab and their sensitivity to the drug was compared to cells expressing the wildtype gene. While P546S mutation sensitised NIH-3T3 cells to cetuximab, R705G had a marginal effect. The double mutant (P546S/R705G) behaved like the P546S mutant, indicating that the mutation in the kinase domain does not contribute to the increased sensitivity to cetuximab. No mutations were found in K-RAS or B-RAF genes and no HPV protein or DNA was detected in the tumour. This is the first report of a somatic mutation in the EGFR ligand binding domain that may contribute to increased sensitivity to cetuximab. CONCLUSIONS: Our results support a role for the P546S mutation in cetuximab sensitivity. Other factors including EGFR protein high copy number and protein overexpression may have also contributed to the observed response. The severity of a skin rash developed by this patient and its correlation with the antitumour activity does not exclude the involvement of the immune system (i.e. complement-mediated immune response) as well. The occurrence of the P546S mutation needs to be evaluated in HNSCC, as a well as a prospective evaluation of cetuximab anti-tumour activity in patients with tumours harbouring the mutation.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Carcinoma de Células Escamosas/tratamento farmacológico , Receptores ErbB/genética , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Mutação , Adulto , Animais , Anticorpos Monoclonais Humanizados/efeitos adversos , Antineoplásicos/efeitos adversos , Antineoplásicos/uso terapêutico , Sítios de Ligação/genética , Carcinoma de Células Escamosas/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Cetuximab , Análise Mutacional de DNA , Exantema/induzido quimicamente , Evolução Fatal , Neoplasias de Cabeça e Pescoço/genética , Humanos , Ligantes , Masculino , Camundongos , Células NIH 3T3 , Resultado do Tratamento
10.
Stem Cell Res ; 10(3): 428-41, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23500643

RESUMO

Embryonic stem cells (ESCs) are hypersensitive to many DNA damaging agents and can rapidly undergo cell death or cell differentiation following exposure. Treatment of mouse ESCs (mESCs) with etoposide (ETO), a topoisomerase II poison, followed by a recovery period resulted in massive cell death with characteristics of a programmed cell death pathway (PCD). While cell death was both caspase- and necroptosis-independent, it was partially dependent on the activity of lysosomal proteases. A role for autophagy in the cell death process was eliminated, suggesting that ETO induces a novel PCD pathway in mESCs. Inhibition of p53 either as a transcription factor by pifithrin α or in its mitochondrial role by pifithrin µ significantly reduced ESC death levels. Finally, EndoG was newly identified as a protease participating in the DNA fragmentation observed during ETO-induced PCD. We coined the term charontosis after Charon, the ferryman of the dead in Greek mythology, to refer to the PCD signaling events induced by ETO in mESCs.


Assuntos
Antineoplásicos Fitogênicos/toxicidade , Apoptose/efeitos dos fármacos , Catepsinas/metabolismo , Células-Tronco Embrionárias/metabolismo , Etoposídeo/toxicidade , Proteína Supressora de Tumor p53/metabolismo , Animais , Caspases/metabolismo , Linhagem Celular , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/efeitos dos fármacos , Endodesoxirribonucleases/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
11.
Mutat Res ; 715(1-2): 1-6, 2011 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-21802432

RESUMO

Maintenance of genomic integrity in embryonic cells is pivotal to proper embryogenesis, organogenesis and to the continuity of species. Cultured mouse embryonic stem cells (mESCs), a model for early embryonic cells, differ from cultured somatic cells in their capacity to remodel chromatin, in their repertoire of DNA repair enzymes, and in the regulation of cell cycle checkpoints. Using 129XC3HF1 mESCs heterozygous for Aprt, we characterized loss of Aprt heterozygosity after exposure to ionizing radiation. We report here that the frequency of loss of heterozygosity mutants in mESCs can be induced several hundred-fold by exposure to 5-10Gy of X-rays. This induction is 50-100-fold higher than the induction reported for mouse adult or embryonic fibroblasts. The primary mechanism underlying the elevated loss of heterozygosity after irradiation is mitotic recombination, with lesser contributions from deletions and gene conversions that span Aprt. Aprt point mutations and epigenetic inactivation are very rare in mESCs compared to fibroblasts. Mouse ESCs, therefore, are distinctive in their response to ionizing radiation and studies of differentiated cells may underestimate the mutagenic effects of ionizing radiation on ESC or other stem cells. Our findings are important to understanding the biological effects of ionizing radiation on early development and carcinogenesis.


Assuntos
Células-Tronco Embrionárias/efeitos da radiação , Perda de Heterozigosidade/efeitos da radiação , Radiação Ionizante , Recombinação Genética/efeitos da radiação , Adenina Fosforribosiltransferase/genética , Animais , Linhagem Celular , Enzimas Reparadoras do DNA/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Mutação Puntual
12.
Nat Commun ; 2: 402, 2011 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-21772273

RESUMO

Distinct oncogenic signalling cascades have been associated with non-Hodgkin lymphoma. ERK1/2 signalling elicits both transcriptional and post-transcriptional effects through phosphorylation of numerous substrates. Here we report a novel molecular relationship between ERK1/2 and CHK2, a protein kinase that is a key mediator of the DNA damage checkpoint that responds to DNA double-strand breaks. Our studies are the first to demonstrate the co-localization and overexpression of ERK1/2 and CHK2 in diffuse large B-cell lymphoma (DLBCL). The physical interaction between ERK and CHK2 was highly dependent on phosphorylated Thr 68 of CHK2. Concurrent administration of an ERK inhibitor enhances the antitumour activity of CHK2 inhibition in both a human DLBCL xenograft model as well as primary human DLBCL cells. Our data suggest a functional interaction between ERK and CHK2 and support the potential combined therapeutic targeting of ERK and CHK2 in human DLBCL.


Assuntos
Linfoma Difuso de Grandes Células B/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/fisiologia , Apoptose/fisiologia , Linhagem Celular Tumoral , Quinase do Ponto de Checagem 2 , Glutationa Transferase , Humanos , Immunoblotting , Imunoprecipitação , Análise em Microsséries , Fosforilação
13.
Nucleic Acids Res ; 39(17): 7465-76, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21653549

RESUMO

The human DEK gene is frequently overexpressed and sometimes amplified in human cancer. Consistent with oncogenic functions, Dek knockout mice are partially resistant to chemically induced papilloma formation. Additionally, DEK knockdown in vitro sensitizes cancer cells to DNA damaging agents and induces cell death via p53-dependent and -independent mechanisms. Here we report that DEK is important for DNA double-strand break repair. DEK depletion in human cancer cell lines and xenografts was sufficient to induce a DNA damage response as assessed by detection of γH2AX and FANCD2. Phosphorylation of H2AX was accompanied by contrasting activation and suppression, respectively, of the ATM and DNA-PK pathways. Similar DNA damage responses were observed in primary Dek knockout mouse embryonic fibroblasts (MEFs), along with increased levels of DNA damage and exaggerated induction of senescence in response to genotoxic stress. Importantly, Dek knockout MEFs exhibited distinct defects in non-homologous end joining (NHEJ) when compared to their wild-type counterparts. Taken together, the data demonstrate new molecular links between DEK and DNA damage response signaling pathways, and suggest that DEK contributes to DNA repair.


Assuntos
Proteínas Cromossômicas não Histona/fisiologia , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Proteínas Oncogênicas/fisiologia , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proteínas Cromossômicas não Histona/antagonistas & inibidores , Proteína Quinase Ativada por DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Feminino , Humanos , Camundongos , Camundongos Knockout , Camundongos Nus , Proteínas Oncogênicas/antagonistas & inibidores , Proteínas Oncogênicas/genética , Proteínas de Ligação a Poli-ADP-Ribose , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Proteínas Supressoras de Tumor/metabolismo
14.
Mutat Res ; 714(1-2): 1-10, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21376736

RESUMO

The polo-like kinases (Plks1-5) are emerging as an important class of proteins involved in many facets of cell cycle regulation and response to DNA damage and stress. Here we show that Plk3 phosphorylates the key cell cycle protein phosphatase Cdc25A on two serine residues in its cyclinB/cdk1 docking domain and regulates its stability in response to DNA damage. We generated a Plk3 knock-out mouse and show that Cdc25A protein from Plk3-deficient cells is less susceptible to DNA damage-mediated degradation than cells with functional Plk3. We also show that absence of Plk3 correlates with loss of the G1/S cell cycle checkpoint. However, neither this compromised DNA damage checkpoint nor reduced susceptibility to proteasome-mediated degradation after DNA damage translated into a significant increase in tumor incidence in the Plk3-deficient mice.


Assuntos
Dano ao DNA , Neoplasias/genética , Proteínas Serina-Treonina Quinases/genética , Fosfatases cdc25/metabolismo , Animais , Ciclo Celular , Linhagem Celular , Camundongos , Camundongos Knockout , Fosforilação , Ubiquitinação , Fosfatases cdc25/química
15.
Cell Div ; 6(1): 4, 2011 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-21310058

RESUMO

BACKGROUND: Failure to regulate the levels of Cdc25A phosphatase during the cell cycle or during a checkpoint response causes bypass of DNA damage and replication checkpoints resulting in genomic instability and cancer. During G1 and S and in cellular response to DNA damage, Cdc25A is targeted for degradation through the Skp1-cullin-ß-TrCP (SCFß-TrCP) complex. This complex binds to the Cdc25A DSG motif which contains serine residues at positions 82 and 88. Phosphorylation of one or both residues is necessary for the binding and degradation to occur. RESULTS: We now show that mutation of serine 88 to phenylalanine, which is a cancer-predisposing polymorphic variant in humans, leads to early embryonic lethality in mice. The mutant protein retains its phosphatase activity both in vitro and in cultured cells. It fails to interact with the apoptosis signal-regulating kinase 1 (ASK1), however, and therefore does not suppress ASK1-mediated apoptosis. CONCLUSIONS: These data suggest that the DSG motif, in addition to its function in Cdc25A-mediated degradation, plays a role in cell survival during early embyogenesis through suppression of ASK1-mediated apoptosis.

16.
DNA Repair (Amst) ; 10(4): 445-51, 2011 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-21315663

RESUMO

Accumulation of mutations in embryonic stem (ES) cells would be detrimental to an embryo derived from these cells, and would adversely affect multiple organ systems and tissue types. ES cells have evolved multiple mechanisms to preserve genomic integrity that extend beyond those found in differentiated cell types. The present study queried whether mismatch repair (MMR) and base-excision repair (BER) may play a role in the maintenance of murine ES cell genomes. The MMR proteins Msh2 and Msh6 are highly elevated in mouse ES cells compared with mouse embryo fibroblasts (MEFs), as are Pms2 and Mlh1, albeit to a lesser extent. Cells transfected with an MMR reporter plasmid showed that MMR repair capacity is low in MEFs, but highly active in wildtype ES cells. As expected, an ES cell line defective in MMR was several-fold less effective in repair level than wildtype ES cells. Like proteins that participate in MMR, the level of proteins involved in BER was elevated in ES cells compared with MEFs. When BER activity was examined biochemically using a uracil-containing oligonucleotide template, repair activity was higher in ES cells compared with MEFs. The data are consistent with the suggestion that ES cells have multiple mechanisms, including highly active MMR and BER that preserve genetic integrity and minimize the accumulation of mutations.


Assuntos
Reparo do DNA/fisiologia , Células-Tronco Embrionárias/metabolismo , Animais , Linhagem Celular , Proteínas de Ligação a DNA/metabolismo , Fibroblastos/metabolismo , Camundongos , Camundongos Endogâmicos C3H
17.
Stem Cells Dev ; 19(11): 1699-711, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20446816

RESUMO

Embryonic stem (ES) cells give rise to all cell types of an organism. Since mutations at this embryonic stage would affect all cells and be detrimental to the overall health of an organism, robust mechanisms must exist to ensure that genomic integrity is maintained. To test this proposition, we compared the capacity of murine ES cells to repair DNA double-strand breaks with that of differentiated cells. Of the 2 major pathways that repair double-strand breaks, error-prone nonhomologous end joining (NHEJ) predominated in mouse embryonic fibroblasts, whereas the high fidelity homologous recombinational repair (HRR) predominated in ES cells. Microhomology-mediated end joining, an emerging repair pathway, persisted at low levels in all cell types examined. The levels of proteins involved in HRR and microhomology-mediated end joining were highly elevated in ES cells compared with mouse embryonic fibroblasts, whereas those for NHEJ were quite variable, with DNA Ligase IV expression low in ES cells. The half-life of DNA Ligase IV protein was also low in ES cells. Attempts to increase the abundance of DNA Ligase IV protein by overexpression or inhibition of its degradation, and thereby elevate NHEJ in ES cells, were unsuccessful. When ES cells were induced to differentiate, however, the level of DNA Ligase IV protein increased, as did the capacity to repair by NHEJ. The data suggest that preferential use of HRR rather than NHEJ may lend ES cells an additional layer of genomic protection and that the limited levels of DNA Ligase IV may account for the low level of NHEJ activity.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Células-Tronco Embrionárias/fisiologia , Recombinação Genética , Animais , Antineoplásicos/farmacologia , Células Cultivadas , DNA Ligase Dependente de ATP , DNA Ligases/metabolismo , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/efeitos dos fármacos , Fibroblastos/citologia , Fibroblastos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Tretinoína/farmacologia
18.
Cancer Lett ; 296(2): 186-93, 2010 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-20434834

RESUMO

The CHEK2 (Chk2 in mice) polymorphic variant, CHEK2*1100delC, leads to genomic instability and is associated with an increased risk for breast cancer. The Ron receptor tyrosine kinase is overexpressed in a large fraction of human breast cancers. Here, we asked whether the low penetrance Chk2*1100delC allele alters the tumorigenic efficacy of Ron in the development of mammary tumors in a mouse model. Our data demonstrate that Ron overexpression on a Chk2*1100delC background accelerates the development of mammary tumors, and shows that pathways mediated by a tyrosine kinase receptor and a regulator of the cell cycle can act to hasten tumorigenesis in vivo.


Assuntos
Neoplasias da Mama/genética , Neoplasias Mamárias Animais/genética , Proteínas Serina-Treonina Quinases/genética , Receptores Proteína Tirosina Quinases/genética , Animais , Neoplasias da Mama/epidemiologia , Neoplasias da Mama/patologia , Ciclo Celular , Divisão Celular , Linhagem Celular Tumoral , Quinase do Ponto de Checagem 2 , Feminino , Variação Genética , Humanos , Imuno-Histoquímica , Neoplasias Mamárias Animais/patologia , Camundongos , Polimorfismo Genético , Fatores de Risco , Deleção de Sequência
19.
Nucleic Acids Res ; 38(9): 2931-43, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20100802

RESUMO

Polo-like kinases (Plk1-4) are emerging as an important class of proteins involved in many aspects of cell cycle regulation and response to DNA damage. Here, we report the cloning of a fifth member of the polo-like kinase family named Plk5. DNA and protein sequence analyses show that Plk5 shares more similarities with Plk2 and Plk3 than with Plk1 and Plk4. Consistent with this observation, we show that mouse Plk5 is a DNA damage inducible gene. Mouse Plk5 protein localizes predominantly to the nucleolus, and deletion of a putative nucleolus localization signal (NoLS) within its N-terminal moiety disrupts its nucleolar localization. Ectopic expression of Plk5 leads to cell cycle arrest in G1, decreased DNA synthesis, and to apoptosis, a characteristic it shares with Plk3. Interestingly, in contrast to mouse Plk5 gene, the sequence of human Plk5 contains a stop codon that produces a truncated protein lacking part of the kinase domain.


Assuntos
Nucléolo Celular/enzimologia , Dano ao DNA , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Apoptose , Linhagem Celular , Clonagem Molecular , Fase G1 , Humanos , Camundongos , Proteínas Serina-Treonina Quinases/análise , Proteínas Serina-Treonina Quinases/classificação , Proteínas Serina-Treonina Quinases/genética , Alinhamento de Sequência , Análise de Sequência , Proteína Supressora de Tumor p53/metabolismo
20.
Proc Natl Acad Sci U S A ; 106(40): 17111-6, 2009 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-19805189

RESUMO

The CHEK2 kinase (Chk2 in mouse) is a member of a DNA damage response pathway that regulates cell cycle arrest at cell cycle checkpoints and facilitates the repair of dsDNA breaks by a recombination-mediated mechanism. There are numerous variants of the CHEK2 gene, at least one of which, CHEK2*1100delC (SNP), associates with breast cancer. A mouse model in which the wild-type Chk2 has been replaced by a Chk2*1100delC allele was tested for elevated risk of spontaneous cancer and increased sensitivity to challenge by a carcinogenic compound. Mice homozygous for Chk2*1100delC produced more tumors than wild-type mice, whereas heterozygous mice were not statistically different. When fractionated by gender, however, homozygous and heterozygous mice developed spontaneous tumors more rapidly and to a far greater extent than wild-type mice, indicative of a marked gender bias in mice harboring the variant allele. Consistent with our previous data showing elevated genomic instability in mouse embryonic fibroblasts (MEFs) derived from mice homozygous for Chk2*1100delC, the level of Cdc25A was elevated in heterozygous and homozygous MEFs and tumors. When challenged with the carcinogen 7,12-dimethylbenz[a]anthracene, all mice, regardless of genotype, had a reduced lifespan. Latency for mammary tumorigenesis was reduced significantly in mice homozygous for Chk2*1100delC but unexpectedly increased for the development of lymphomas. An implication from this study is that individuals who harbor the variant CHEK2*1100delC allele not only are at an elevated risk for the development of cancer but also that this risk can be further increased as a result of environmental exposure.


Assuntos
Predisposição Genética para Doença/genética , Neoplasias/genética , Polimorfismo de Nucleotídeo Único , Proteínas Serina-Treonina Quinases/genética , 9,10-Dimetil-1,2-benzantraceno , Animais , Western Blotting , Quinase do Ponto de Checagem 2 , Feminino , Fibroblastos/metabolismo , Deleção de Genes , Genótipo , Imuno-Histoquímica , Masculino , Camundongos , Neoplasias/induzido quimicamente , Neoplasias/patologia , Fosforilação , Fatores de Risco , Fatores Sexuais , Fatores de Tempo , Fosfatases cdc25/genética , Fosfatases cdc25/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA