Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Med ; 30(1): 114, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39107723

RESUMO

Glucose transporter 5 (GLUT5) overexpression has gained increasing attention due to its profound implications for tumorigenesis. This manuscript provides a comprehensive overview of the key findings and implications associated with GLUT5 overexpression in cancer. GLUT5 has been found to be upregulated in various cancer types, leading to alterations in fructose metabolism and enhanced glycolysis, even in the presence of oxygen, a hallmark of cancer cells. This metabolic shift provides cancer cells with an alternative energy source and contributes to their uncontrolled growth and survival. Beyond its metabolic roles, recent research has unveiled additional aspects of GLUT5 in cancer biology. GLUT5 overexpression appears to play a critical role in immune evasion mechanisms, which further worsens tumor progression and complicates therapeutic interventions. This dual role of GLUT5 in both metabolic reprogramming and immune modulation highlights its significance as a potential diagnostic marker and therapeutic target. Understanding the molecular mechanisms driving GLUT5 overexpression is crucial for developing targeted therapeutic strategies that can disrupt the unique vulnerabilities of GLUT5-overexpressing cancer cells. This review emphasizes the complexities surrounding GLUT5's involvement in cancer and underscores the pressing need for continued research to unlock its potential as a diagnostic biomarker and therapeutic target, ultimately improving cancer management and patient outcomes.


Assuntos
Regulação Neoplásica da Expressão Gênica , Transportador de Glucose Tipo 5 , Neoplasias , Humanos , Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/patologia , Transportador de Glucose Tipo 5/metabolismo , Transportador de Glucose Tipo 5/genética , Animais , Carcinogênese/genética , Carcinogênese/metabolismo , Glicólise , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética
2.
Physiol Rep ; 8(16): e14555, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32812392

RESUMO

BACKGROUND: This study was undertaken to test the hypothesis that the newly synthesized curcuminoids B2BrBC and C66 supplementation will overcome hyperoxia-induced tracheal hyperreactivity and impairment of relaxation of tracheal smooth muscle (TSM). MATERIALS AND METHODS: Rat pups (P5) were exposed to hyperoxia (>95% O2 ) or normoxia for 7 days. At P12, tracheal cylinders were used to study in vitro contractile responses induced by methacholine (10-8 -10-4 M) or relaxation induced by electrical field stimulation (5-60 V) in the presence/absence of B2BrBC or C66, or to study the direct relaxant effects elicited by both analogs. RESULTS: Hyperoxia significantly increased contraction and decreased relaxation of TSM compared to normoxia controls. Presence of B2BrBC or C66 normalized both contractile and relaxant responses altered by hyperoxia. Both, curcuminoids directly induced dose-dependent relaxation of preconstricted TSM. Supplementation of hyperoxic animals with B2BrBC or C66, significantly increased catalase activity. Lung TNF-α was significantly increased in hyperoxia-exposed animals. Both curcumin analogs attenuated increases in TNF-α in hyperoxic animals. CONCLUSION: We show that B2BrBC and C66 provide protection against adverse contractility and relaxant effect of hyperoxia on TSM, and whole lung inflammation. Both analogs induced direct relaxation of TSM. Through restoration of catalase activity in hyperoxia, we speculate that analogs are protective against hyperoxia-induced tracheal hyperreactivity by augmenting H2 O2 catabolism. Neonatal hyperoxia induces increased tracheal contractility, attenuates tracheal relaxation, diminishes lung antioxidant capacity, and increases lung inflammation, while monocarbonyl CUR analogs were protective of these adverse effects of hyperoxia. Analogs may be promising new therapies for neonatal hyperoxic airway and lung disease.


Assuntos
Hiper-Reatividade Brônquica/tratamento farmacológico , Curcumina/análogos & derivados , Hiperóxia/tratamento farmacológico , Relaxamento Muscular , Músculo Liso/efeitos dos fármacos , Animais , Catalase/metabolismo , Curcumina/farmacologia , Feminino , Pulmão/metabolismo , Masculino , Contração Muscular , Músculo Liso/fisiologia , Ratos , Ratos Wistar , Traqueia/citologia , Traqueia/efeitos dos fármacos , Traqueia/fisiologia , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA