Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Dis Model Mech ; 16(6)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37021517

RESUMO

Patients with Hirschsprung disease lack enteric ganglia in the distal colon and propulsion of colorectal content is substantially impaired. Proposed stem cell therapies to replace neurons require surgical bypass of the aganglionic bowel during re-colonization, but there is inadequate knowledge of the consequences of bypass. We performed bypass surgery in Ednrb-/- Hirschsprung rat pups. Surgically rescued rats failed to thrive, an outcome reversed by supplying electrolyte- and glucose-enriched drinking water. Histologically, the bypassed colon had normal structure, but grew substantially less in diameter than the functional region proximal to the bypass. Extrinsic sympathetic and spinal afferent neurons projected to their normal targets, including arteries and the circular muscle, in aganglionic regions. However, although axons of intrinsic excitatory and inhibitory neurons grew into the aganglionic region, their normally dense innervation of circular muscle was not restored. Large nerve trunks that contained tyrosine hydroxylase (TH)-, calcitonin gene-related peptide (CGRP, encoded by Calca or Calcb)-, neuronal nitric oxide synthase (nNOS or NOS1)-, vasoactive intestinal peptide (VIP)- and tachykinin (encoded by Tac1)-immunoreactive axons occurred in the distal aganglionic region. We conclude that the rescued Ednrb-/- rat provides a good model for the development of cell therapies for the treatment of Hirschsprung disease.


Assuntos
Doença de Hirschsprung , Ratos , Animais , Doença de Hirschsprung/terapia , Doença de Hirschsprung/patologia , Colo/patologia , Neurônios/patologia , Intestinos/patologia , Terapia Baseada em Transplante de Células e Tecidos
2.
Oncotarget ; 13: 785-799, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35677533

RESUMO

Interleukin-33 (IL-33) is an IL-1 family cytokine known to promote T-helper (Th) type 2 immune responses that are often deregulated in gastric cancer (GC). IL-33 is overexpressed in human gastric tumours suggesting a role in driving GC progression although a causal link has not been proven. Here, we investigated the impact of IL-33 genetic deficiency in the well-characterized gp130 F/F mouse model of GC. Expression of IL-33 (and it's cognate receptor, ST2) was increased in human and mouse GC progression. IL-33 deficient gp130 F/F /Il33 -/- mice had reduced gastric tumour growth and reduced recruitment of pro-tumorigenic myeloid cells including key mast cell subsets and type-2 (M2) macrophages. Cell sorting of gastric tumours revealed that IL-33 chiefly localized to gastric (tumour) epithelial cells and was absent from tumour-infiltrating immune cells (except modest IL-33 enrichment within CD11b+ CX3CR1+CD64+MHCII+ macrophages). By contrast, ST2 was absent from gastric epithelial cells and localized exclusively within the (non-macrophage) immune cell fraction together with mast cell markers, Mcpt1 and Mcpt2. Collectively, we show that IL-33 is required for gastric tumour growth and provide evidence of a likely mechanism by which gastric epithelial-derived IL-33 drives mobilization of tumour-promoting inflammatory myeloid cells.


Assuntos
Interleucina-33 , Neoplasias Gástricas , Animais , Receptor gp130 de Citocina , Citocinas , Humanos , Proteína 1 Semelhante a Receptor de Interleucina-1/genética , Interleucina-33/metabolismo , Camundongos , Camundongos Knockout , Células Mieloides/metabolismo , Transdução de Sinais , Neoplasias Gástricas/patologia
3.
Biol Methods Protoc ; 7(1): bpac004, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35111975

RESUMO

Hirschsprung disease occurs when children are born with no intrinsic nerve cells in varying lengths of the large intestine. In the most severe cases, neurons are also missing from the distal part of the small intestine. Nerve-mediated relaxation of the aganglionic bowel fails and fecal matter accumulates in the more proximal regions of the intestine. This is life threatening. Perforation of the bowel can ensue, causing sepsis and in some cases, death of the infant. Repopulation of the colon with neural stem cells is a potential therapy, but for this to be successful the patient or experimental animal needs to survive long enough for neural precursors to differentiate and make appropriate connections. We have developed a surgical procedure that can be applied to rats with Hirschsprung disease. A stoma was created to allow the normal bowel to empty and a second stoma leading to the aganglionic bowel was also created. This allowed homozygous mutants that would usually die at less than 3 weeks of age to survive into adulthood. During this time, the rats also required post-operative care of their stomas. The interventions we describe provide an animal model of Hirschsprung disease that is suited to assess the effectiveness of cell therapies in the treatment of this condition.

4.
Cell Tissue Res ; 378(3): 441-456, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31302761

RESUMO

Artemin is a neurotrophic factor that plays a crucial role in the regulation of neural development and regeneration and has also been implicated in the pathogenesis of inflammatory pain. The receptor for artemin, GFRα3, is expressed by sympathetic and nociceptive sensory neurons, including some that innervate the bone marrow, but it is unclear if it is also expressed in other cell types in the bone marrow. Our goal in the present study was to characterise the expression of GFRα3 in nonneuronal cells in the bone marrow. Immunohistochemical studies revealed that GFRα3-expressing cells in the bone marrow are spatially associated with blood vessels and are in intimate contact with nerve fibres. We used various combinations of markers to distinguish different cell types and found that the GFRα3-expressing cells expressed markers of nonmyelinating Schwann cells (e.g. GFAP, p75NTR, nestin). Analysis of bone marrow sections of Wnt1-reporter mice also demonstrated that they originate from the neural crest. Further characterisation using flow cytometry revealed that GFRα3 is expressed in a population of CD51+Sca1-PDGFRα- cells, reinforcing the notion that they are neural crest-derived, nonmyelinating Schwann cells. In conclusion, there is a close association between peripheral nerve terminals and a population of nonneuronal cells that express GFRα3 in the bone marrow. The nonneuronal cells have characteristics consistent with a neural crest-derived, nonmyelinating Schwann cell phenotype. Our findings provide a better understanding of the expression pattern of GFRα3 in the bone marrow microenvironment.


Assuntos
Células da Medula Óssea/metabolismo , Medula Óssea/metabolismo , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Células de Schwann/metabolismo , Animais , Células da Medula Óssea/citologia , Camundongos , Camundongos Endogâmicos C57BL , Células de Schwann/citologia
5.
Dev Biol ; 428(1): 74-87, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28528728

RESUMO

The enteric nervous system (ENS) is an extensive network of neurons in the gut wall that arises from neural crest-derived cells. Like other populations of neural crest cells, it is known that enteric neural crest-derived cells (ENCCs) influence the behaviour of each other and therefore must communicate. However, little is known about how ENCCs communicate with each other. In this study, we used Ca2+ imaging to examine communication between ENCCs in the embryonic gut, using mice where ENCCs express a genetically-encoded calcium indicator. Spontaneous propagating calcium waves were observed between neighbouring ENCCs, through both neuronal and non-neuronal ENCCs. Pharmacological experiments showed wave propagation was not mediated by gap junctions, but by purinergic signalling via P2 receptors. The expression of several P2X and P2Y receptors was confirmed using RT-PCR. Furthermore, inhibition of P2 receptors altered the morphology of the ENCC network, without affecting neuronal differentiation or ENCC proliferation. It is well established that purines participate in synaptic transmission in the mature ENS. Our results describe, for the first time, purinergic signalling between ENCCs during pre-natal development, which plays roles in the propagation of Ca2+ waves between ENCCs and in ENCC network formation. One previous study has shown that calcium signalling plays a role in sympathetic ganglia formation; our results suggest that calcium waves are likely to be important for enteric ganglia development.


Assuntos
Sinalização do Cálcio/fisiologia , Sistema Nervoso Entérico/embriologia , Crista Neural/embriologia , Receptores Purinérgicos P2X/metabolismo , Receptores Purinérgicos P2Y/metabolismo , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Crista Neural/citologia , Neurogênese/fisiologia , Técnicas de Cultura de Órgãos , Antagonistas do Receptor Purinérgico P2X/farmacologia , Antagonistas do Receptor Purinérgico P2Y/farmacologia
6.
Am J Physiol Gastrointest Liver Physiol ; 312(4): G348-G354, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28209600

RESUMO

Cell therapeutic approaches to treat a range of congenital and degenerative neuropathies are under intense investigation. There have been recent significant advancements in the development of cell therapy to treat disorders of the enteric nervous system (ENS), enteric neuropathies. These advances include the efficient generation of enteric neural progenitors from pluripotent stem cells and the rescue of a Hirschsprung disease model mouse following their transplantation into the bowel. Furthermore, a recent study provides evidence of functional innervation of the bowel muscle by neurons derived from transplanted ENS-derived neural progenitors. This mini-review discusses these recent findings, compares endogenous ENS-derived progenitors and pluripotent stem cell-derived progenitors as a cell source for therapy, and proposes the key steps for cell therapy to treat Hirschsprung disease.


Assuntos
Sistema Nervoso Entérico/citologia , Doença de Hirschsprung/terapia , Células-Tronco Neurais/transplante , Transplante de Células-Tronco/métodos , Animais , Humanos , Camundongos
7.
Gastroenterology ; 152(6): 1407-1418, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28115057

RESUMO

BACKGROUND & AIMS: Cell therapy offers the potential to treat gastrointestinal motility disorders caused by diseased or absent enteric neurons. We examined whether neurons generated from transplanted enteric neural cells provide a functional innervation of bowel smooth muscle in mice. METHODS: Enteric neural cells expressing the light-sensitive ion channel, channelrhodopsin, were isolated from the fetal or postnatal mouse bowel and transplanted into the distal colon of 3- to 4-week-old wild-type recipient mice. Intracellular electrophysiological recordings of responses to light stimulation of the transplanted cells were made from colonic smooth muscle cells in recipient mice. Electrical stimulation of endogenous enteric neurons was used as a control. RESULTS: The axons of graft-derived neurons formed a plexus in the circular muscle layer. Selective stimulation of graft-derived cells by light resulted in excitatory and inhibitory junction potentials, the electrical events underlying contraction and relaxation, respectively, in colonic muscle cells. Graft-derived excitatory and inhibitory motor neurons released the same neurotransmitters as endogenous motor neurons-acetylcholine and a combination of adenosine triphosphate and nitric oxide, respectively. Graft-derived neurons also included interneurons that provided synaptic inputs to motor neurons, but the pharmacologic properties of interneurons varied with the age of the donors from which enteric neural cells were obtained. CONCLUSIONS: Enteric neural cells transplanted into the bowel give rise to multiple functional types of neurons that integrate and provide a functional innervation of the smooth muscle of the bowel wall. Circuits composed of both motor neurons and interneurons were established, but the age at which cells are isolated influences the neurotransmitter phenotype of interneurons that are generated.


Assuntos
Colo/inervação , Músculo Liso/inervação , Neurônios/fisiologia , Neurônios/transplante , Potenciais Sinápticos , Acetilcolina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Axônios/fisiologia , Terapia Baseada em Transplante de Células e Tecidos , Channelrhodopsins , Estimulação Elétrica , Fenômenos Eletrofisiológicos , Sistema Nervoso Entérico/fisiologia , Interneurônios/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Neurônios Motores/fisiologia , Neurônios/metabolismo , Óxido Nítrico/metabolismo , Optogenética , Estimulação Luminosa
8.
Stem Cell Reports ; 8(2): 476-488, 2017 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-28089669

RESUMO

Cell therapy is a promising approach to generate an enteric nervous system (ENS) and treat enteric neuropathies. However, for translation to the clinic, it is highly likely that enteric neural progenitors will require manipulation prior to transplantation to enhance their ability to migrate and generate an ENS. In this study, we examine the effects of exposure to several factors on the ability of ENS progenitors, grown as enteric neurospheres, to migrate and generate an ENS. Exposure to glial-cell-line-derived neurotrophic factor (GDNF) resulted in a 14-fold increase in neurosphere volume and a 12-fold increase in cell number. Following co-culture with embryonic gut or transplantation into the colon of postnatal mice in vivo, cells derived from GDNF-treated neurospheres showed a 2-fold increase in the distance migrated compared with controls. Our data show that the ability of enteric neurospheres to generate an ENS can be enhanced by exposure to appropriate factors.


Assuntos
Diferenciação Celular , Sistema Nervoso Entérico/citologia , Sistema Nervoso Entérico/embriologia , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neurogênese , Animais , Biomarcadores , Contagem de Células , Diferenciação Celular/efeitos dos fármacos , Movimento Celular , Proliferação de Células , Tamanho Celular/efeitos dos fármacos , Células Cultivadas , Técnicas de Cocultura , Fator Neurotrófico Derivado de Linhagem de Célula Glial/farmacologia , Camundongos , Camundongos Transgênicos , Células-Tronco Neurais/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Neurônios/citologia , Neurônios/metabolismo , Fenótipo , Transplante de Células-Tronco
9.
Dev Biol ; 417(2): 229-51, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27059883

RESUMO

Over the last 20 years, there has been increasing focus on the development of novel stem cell based therapies for the treatment of disorders and diseases affecting the enteric nervous system (ENS) of the gastrointestinal tract (so-called enteric neuropathies). Here, the idea is that ENS progenitor/stem cells could be transplanted into the gut wall to replace the damaged or absent neurons and glia of the ENS. This White Paper sets out experts' views on the commonly used methods and approaches to identify, isolate, purify, expand and optimize ENS stem cells, transplant them into the bowel, and assess transplant success, including restoration of gut function. We also highlight obstacles that must be overcome in order to progress from successful preclinical studies in animal models to ENS stem cell therapies in the clinic.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , Sistema Nervoso Entérico/patologia , Trato Gastrointestinal/patologia , Doença de Hirschsprung/terapia , Pseudo-Obstrução Intestinal/terapia , Células-Tronco Neurais/transplante , Transplante de Células-Tronco , Animais , Modelos Animais de Doenças , Trato Gastrointestinal/inervação , Guias como Assunto , Doença de Hirschsprung/patologia , Humanos , Pseudo-Obstrução Intestinal/patologia
10.
J Neurogastroenterol Motil ; 21(4): 552-9, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26424040

RESUMO

BACKGROUND/AIMS: Rats with a spontaneous null mutation in endothelin receptor type B or Ednrb (sl/sl; spotting lethal) lack enteric neurons in the distal bowel and usually die within the first week after birth. This early postnatal lethality limits their use for examining the potential of cell therapy to treat Hirschsprung disease, and for studies of the influence of EDNRB on the mature CNS and vascular systems. METHODS: We have developed a surgical intervention to prolong the life of the spotting lethal sl/sl rat, in which we perform a colostomy on postnatal (P) day 4-6 rats to avoid the fatal obstruction caused by the lack of colonic enteric neurons. RESULTS: The stomas remained patent and functional and the rats matured normally following surgery. Weight gains were comparable between control and Hirschsprung phenotype (sl/sl) rats, which were followed until 4 weeks after surgery (5 weeks old). We confirmed the absence of enteric neurons in the distal colon of rats whose lives were saved by the surgical intervention. CONCLUSIONS: This study provides a novel approach for studying EDNRB signalling in multiple organ systems in mature rats, including an animal model to study the efficacy of cell therapy to treat Hirschsprung disease.

11.
Am J Physiol Gastrointest Liver Physiol ; 307(7): G741-8, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25125684

RESUMO

Gut motility disorders can result from an absent, damaged, or dysfunctional enteric nervous system (ENS). Cell therapy is an exciting prospect to treat these enteric neuropathies and restore gut motility. Previous studies have examined a variety of sources of stem/progenitor cells, but the ability of different sources of cells to generate enteric neurons has not been directly compared. It is important to identify the source of stem/progenitor cells that is best at colonizing the bowel and generating neurons following transplantation. The aim of this study was to compare the ability of central nervous system (CNS) progenitors and ENS progenitors to colonize the colon and differentiate into neurons. Genetically labeled CNS- and ENS-derived progenitors were cocultured with aneural explants of embryonic mouse colon for 1 or 2.5 wk to assess their migratory, proliferative, and differentiation capacities, and survival, in the embryonic gut environment. Both progenitor cell populations were transplanted in the postnatal colon of mice in vivo for 4 wk before they were analyzed for migration and differentiation using immunohistochemistry. ENS-derived progenitors migrated further than CNS-derived cells in both embryonic and postnatal gut environments. ENS-derived progenitors also gave rise to more neurons than their CNS-derived counterparts. Furthermore, neurons derived from ENS progenitors clustered together in ganglia, whereas CNS-derived neurons were mostly solitary. We conclude that, within the gut environment, ENS-derived progenitors show superior migration, proliferation, and neuronal differentiation compared with CNS progenitors.


Assuntos
Encéfalo/fisiologia , Colo/inervação , Sistema Nervoso Entérico/fisiologia , Regeneração Nervosa , Células-Tronco Neurais/fisiologia , Neurogênese , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Movimento Celular , Proliferação de Células , Células Cultivadas , Técnicas de Cocultura , Colo/transplante , Sistema Nervoso Entérico/citologia , Sistema Nervoso Entérico/metabolismo , Proteínas Luminescentes/biossíntese , Proteínas Luminescentes/genética , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/transplante , Fatores de Tempo , Técnicas de Cultura de Tecidos
12.
Biomaterials ; 34(27): 6306-17, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23747009

RESUMO

An efficient delivery system is critical for the success of cell therapy. To deliver cells to a dynamic organ, the biomaterial vehicle should mechanically match with the non-linearly elastic host tissue. In this study, non-linearly elastic biomaterials have been fabricated from a chemically crosslinked elastomeric poly(glycerol sebacate) (PGS) and thermoplastic poly(l-lactic acid) (PLLA) using the core/shell electrospinning technique. The spun fibrous materials containing a PGS core and PLLA shell demonstrate J-shaped stress-strain curves, having ultimate tensile strength (UTS), rupture elongation and stiffness constants of 1 ± 0.2 MPa, 25 ± 3% and 12 ± 2, respectively, which are comparable to skin tissue properties reported previously. Our ex vivo and in vivo trials have shown that the elastomeric mesh supports and fosters the growth of enteric neural crest (ENC) progenitor cells, and that the cell-seeded elastomeric fibrous sheet physically remains in intimate contact with guts after grafting, providing the effective delivery of the progenitor cells to an embryonic and post-natal gut environment.


Assuntos
Materiais Biocompatíveis/química , Colo/cirurgia , Decanoatos/química , Glicerol/análogos & derivados , Ácido Láctico/química , Crista Neural/citologia , Polímeros/química , Transplante de Células-Tronco , Alicerces Teciduais/química , Animais , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Colo/citologia , Elasticidade , Glicerol/química , Camundongos , Camundongos Endogâmicos C57BL , Poliésteres , Resistência à Tração , Engenharia Tecidual
13.
J Clin Invest ; 123(3): 1182-91, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23454768

RESUMO

Cell therapy has the potential to treat gastrointestinal motility disorders caused by diseases of the enteric nervous system. Many studies have demonstrated that various stem/progenitor cells can give rise to functional neurons in the embryonic gut; however, it is not yet known whether transplanted neural progenitor cells can migrate, proliferate, and generate functional neurons in the postnatal bowel in vivo. We transplanted neurospheres generated from fetal and postnatal intestinal neural crest-derived cells into the colon of postnatal mice. The neurosphere-derived cells migrated, proliferated, and generated neurons and glial cells that formed ganglion-like clusters within the recipient colon. Graft-derived neurons exhibited morphological, neurochemical, and electrophysiological characteristics similar to those of enteric neurons; they received synaptic inputs; and their neurites projected to muscle layers and the enteric ganglia of the recipient mice. These findings show that transplanted enteric neural progenitor cells can generate functional enteric neurons in the postnatal bowel and advances the notion that cell therapy is a promising strategy for enteric neuropathies.


Assuntos
Colo/inervação , Células-Tronco Neurais/fisiologia , Neurônios/fisiologia , Potenciais de Ação , Animais , Antígenos de Diferenciação/metabolismo , Diferenciação Celular , Movimento Celular , Proliferação de Células , Forma Celular , Células Cultivadas , Colo/citologia , Dendritos/metabolismo , Proteínas ELAV/metabolismo , Sistema Nervoso Entérico/citologia , Feto/citologia , Gânglios Autônomos/citologia , Camundongos , Fatores de Crescimento Neural/metabolismo , Crista Neural/citologia , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/transplante , Neuroglia/metabolismo , Neurônios/metabolismo , Fenótipo , Subunidade beta da Proteína Ligante de Cálcio S100 , Proteínas S100/metabolismo , Esferoides Celulares/fisiologia , Esferoides Celulares/transplante
14.
Stem Cells ; 30(9): 1999-2009, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22761039

RESUMO

Monoclonal antibodies against cell surface markers are powerful tools in the study of tissue regeneration, repair, and neoplasia, but there is a paucity of specific reagents to identify stem and progenitor cells in tissues of endodermal origin. The epitope defined by the GCTM-5 monoclonal antibody is a putative marker of hepatic progenitors. We sought to analyze further the distribution of the GCTM-5 antigen in normal tissues and disease states and to characterize the antigen biochemically. The GCTM-5 epitope was specifically expressed on tissues derived from the definitive endoderm, in particular the fetal gut, liver, and pancreas. Antibody reactivity was detected in subpopulations of normal adult biliary and pancreatic duct cells, and GCTM-5-positive cells isolated from the nonparenchymal fraction of adult liver expressed markers of progenitor cells. The GCTM-5-positive cell populations in liver and pancreas expanded greatly in numbers in disease states such as biliary atresia, cirrhosis, and pancreatitis. Neoplasms arising in these tissues also expressed the GCTM-5 antigen, with pancreatic adenocarcinoma in particular showing strong and consistent reactivity. The GCTM-5 epitope was also strongly displayed on cells undergoing intestinal metaplasia in Barrett's esophagus, a precursor to esophageal carcinoma. Biochemical, mass spectrometry, and immunochemical studies revealed that the GCTM-5 epitope is associated with the mucin-like glycoprotein FCGBP. The GCTM-5 epitope on the mucin-like glycoprotein FCGBP is a cell surface marker for the study of normal differentiation lineages, regeneration, and disease progression in tissues of endodermal origin.


Assuntos
Moléculas de Adesão Celular/imunologia , Epitopos/biossíntese , Glicoproteínas/imunologia , Fígado/citologia , Células-Tronco/imunologia , Diferenciação Celular/imunologia , Endoderma/citologia , Endoderma/imunologia , Epitopos/imunologia , Humanos , Fígado/imunologia , Células-Tronco/citologia
15.
Stem Cells ; 23(1): 103-12, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15625127

RESUMO

The nature of the cells that contribute to the repopulation of the liver after hepatic necrosis or cirrhosis remains uncertain, in part because we lack specific markers to facilitate identification and prospective isolation of progenitor cells. The monoclonal antibody GCTM-5 reacts with a minority subpopulation of cells in spontaneously differentiating cultures of pluripotent human embryonal carcinoma or embryonic stem cells. The epitope recognized by GCTM-5 is found on a 50-kDa protein present on the surface of these cells. In tissue sections of first-trimester human embryos, GCTM-5 specifically stained hepatoblasts and no other cell type examined. In normal pediatric or adult liver, GCTM-5 reacted with a minority population of luminal bile duct cells. In diseased livers, the numbers of GCTM-5-positive cells were increased compared with normal liver; antibody staining was restricted to a subpopulation of ductular reactive cells, and among this subpopulation we observed GCTM-5-positive cells that did not express cytokeratin 19 or N-CAM, classical makers of ductular reactive cells. Live GCTM-5-positive cells could be isolated from diseased livers by immunomagnetic sorting. These results suggest that GCTM-5 will be a useful reagent for defining cell lineage relationships between putative progenitor populations in embryonic liver and in the biliary epithelium during tissue repair.


Assuntos
Antígenos de Superfície/análise , Ductos Biliares/citologia , Biomarcadores Tumorais/análise , Células Epiteliais/citologia , Fígado/citologia , Fígado/embriologia , Células-Tronco/citologia , Adulto , Animais , Anticorpos Monoclonais/metabolismo , Antígenos de Diferenciação/análise , Antígenos de Superfície/genética , Linhagem Celular Tumoral , Embrião de Mamíferos , Células Epiteliais/metabolismo , Feminino , Humanos , Imuno-Histoquímica , Fígado/ultraestrutura , Camundongos , Células-Tronco/metabolismo , Células-Tronco/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA